【題目】如圖①已知正方形ABCD的邊BC、CD上分別有E、F兩點(diǎn),且∠EAF=45°,現(xiàn)將ADF繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°ABH處.

(1)線段EF、BE、DF有何數(shù)量關(guān)系?并說(shuō)明理由;

模仿(1)中的方法解決(2)、(3)兩個(gè)問(wèn)題:

(2)如圖②,若將E、F移至BD上,其余條件不變,且BE=,DF=3,求EF的長(zhǎng);

(3)如圖③,圖形變成矩形ABCD,EAF=45°,BE=3,AB=6,AD=10,求DFEF的長(zhǎng).

【答案】(1) EF=BE+DF;(2) ;(3) .

【解析】試題分析1)由旋轉(zhuǎn)的性質(zhì)得:ADF≌△ABH,從而可由SASHAE≌△FAE,得到EF=HE,從而得到結(jié)論;

2)把△ABE繞點(diǎn)A旋轉(zhuǎn)90°到△ADG,連接GF.同(1)可得:△AGD≌△AEB,△AEF≌△AGF,得到BE=GD,∠GDA=∠EBA=45°,EF=GF,由∠FDA=45°,得到∠FDG=90°.在RtGDF中,由勾股定理即可得到結(jié)論;

3)把△ADFA旋轉(zhuǎn)90°到△AQH,連接EH,過(guò)EEPHQP.同理得ADF≌△AQHHAE≌△FAE,EF=HE.設(shè)DF=x.在RtHPERtECF中,由勾股定理即可得出結(jié)論.

試題解析:解:(1EF=BE+DF理由如下:

由旋轉(zhuǎn)的性質(zhì)得:ADF≌△ABH,∴AH=AFDF=HB,∠HAB=∠DAF.∵∠DAF+∠FAB=90°,∴∠FAH=90°.∵∠EAF=45°,∴∠EAH=45°,∴∠EAF=∠EAH.在△EAF和△EAH中,∵AF=AH,∠EAF=∠HAEAE=AE,∴HAE≌△FAESAS),∴EF=HE.∵HE=HB+BE=DF+BE,∴EF=BE+DF

2)把△ABE繞點(diǎn)A旋轉(zhuǎn)90°到△ADG,連接GF.同(1)可得:△AGD≌△AEB,△AEF≌△AGF,∴BE=GD,∠GDA=∠EBA=45°,EF=GF.∵∠FDA=45°,∴∠FDG=90°,∴EF=FG====

3)把△ADFA旋轉(zhuǎn)90°到△AQH,連接EH,過(guò)EEPHQP

同理得ADF≌△AQH,HAE≌△FAESAS),∴EF=HE

設(shè)DF=x.在RtHPERtECF中,由勾股定理得:

;

解得: ,∴DF=,EF=

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(1)算一算下面兩組算式:(3×5)232×52;[(-2)×3]2(-2)2×32,每組兩個(gè)算式的結(jié)果是否相同?

(2)想一想,(a×b)3等于什么?

(3)猜一猜,當(dāng)n為正整數(shù)時(shí),(a×b)n等于什么?你能利用乘方的意義說(shuō)明理由嗎?

(4)利用上述結(jié)論,計(jì)算:(-8)2018×(0.125)2019.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某化妝品銷售公司每月收益y萬(wàn)元與銷售量x萬(wàn)件的函數(shù)關(guān)系如圖所示.(收益=銷售利潤(rùn)﹣固定開(kāi)支)

(1)寫(xiě)出圖中點(diǎn)A與點(diǎn)B的實(shí)際意義;

(2)求y與x的函數(shù)表達(dá)式;

(3)已知目前公司每月略有虧損,為了讓公司扭虧為盈,經(jīng)理決定將每件產(chǎn)品的銷售單價(jià)提高2元,請(qǐng)?jiān)趫D中畫(huà)出提價(jià)后y與x函數(shù)關(guān)系的圖象,并直接寫(xiě)出該函數(shù)的表達(dá)式.(要標(biāo)出確定函數(shù)圖象時(shí)所描的點(diǎn)的坐標(biāo))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】學(xué)習(xí)有理數(shù)的乘法后,老師給同學(xué)們這樣一道題目:計(jì)算:49×(﹣5),看誰(shuí)算的又快又對(duì),有兩位同學(xué)的解法如下:

小明:原式=﹣×5=﹣=﹣249;

小軍:原式=(49+)×(﹣5)=49×(﹣5)+×(﹣5)=﹣249

(1)對(duì)于以上兩種解法,你認(rèn)為誰(shuí)的解法較好?

(2)上面的解法對(duì)你有何啟發(fā),你認(rèn)為還有更好的方法嗎?如果有,請(qǐng)把它寫(xiě)出來(lái);

(3)用你認(rèn)為最合適的方法計(jì)算:19×(﹣8)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】市射擊隊(duì)為從甲、乙兩名運(yùn)動(dòng)員中選拔一人參加省比賽,對(duì)他們進(jìn)行了六次測(cè)試,測(cè)試成績(jī)?nèi)绫恚▎挝唬涵h(huán)):

第一次

第二次

第三次

第四次

第五次

第六次

10

8

9

8

10

9

10

7

10

10

9

8


(1)根據(jù)表格中的數(shù)據(jù),分別計(jì)算甲、乙的平均成績(jī);
(2)已知甲六次成績(jī)的方差S2= ,試計(jì)算乙六次測(cè)試成績(jī)的方差;根據(jù)(1)、(2)計(jì)算的結(jié)果,你認(rèn)為推薦誰(shuí)參加省比賽更合適,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)算:

(1)(-3)-(-15)÷(-3);   (2)(-42)÷(-7)-(-6)×4;

(3)-14×[2-(-3)2];   (4)-13-(1-0.5)2××(2-22);   

(5)10+8×(-)2-2÷;   (6)(-1)10-(-3)×|.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中:A(11),B(11),C(1,-2),D(1,-2),現(xiàn)把一條長(zhǎng)為2 018個(gè)單位長(zhǎng)度且沒(méi)有彈性的細(xì)線(線的粗細(xì)忽略不計(jì))的一端固定在點(diǎn)A處,并按A→B→C→D→A→…的規(guī)律緊繞在四邊形ABCD的邊上,則細(xì)線另一端所在位置的點(diǎn)的坐標(biāo)是________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】根據(jù)要求,解答下列問(wèn)題:
(1)解答下列問(wèn)題 ①方程x2﹣2x+1=0的解為
②方程x2﹣3x+2=0的解為;
③方程x2﹣4x+3=0的解為

(2)根據(jù)以上方程特征及其解的特征,請(qǐng)猜想: ①方程x2﹣9x+8=0的解為
②關(guān)于x的方程的解為x1=1,x2=n.
(3)請(qǐng)用配方法解方程x2﹣9x+8=0,以驗(yàn)證猜想結(jié)論的正確性.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知E是正方形ABCD的邊CD外的一點(diǎn),DCE為等邊三角形,BE交對(duì)角線ACF .

(1)求∠AFD的度數(shù)

(2)求證:AF = EF.

查看答案和解析>>

同步練習(xí)冊(cè)答案