閱讀下面一則材料,回答下題:

如圖A、B兩點(diǎn)被池塘隔開(kāi),在AB外選一點(diǎn)C,連結(jié)ACBC,并分別找出ACBC的中點(diǎn)M、N,如果測(cè)得MN=20 m,那么AB=2×20 m=40 m

(1)

也可由圖所求,用相似三角形知識(shí)來(lái)解,請(qǐng)根據(jù)題意填空:延長(zhǎng)ACD,使CDAC,延長(zhǎng)BCE,使CE=________,則由相似三角形得,AB=________.

(2)

還可由三角形全等的知識(shí)來(lái)設(shè)計(jì)測(cè)量方案,求出AB的長(zhǎng),請(qǐng)用上面類(lèi)似的步驟,在圖中畫(huà)出圖形并敘述你的測(cè)量方案.

答案:
解析:

(1)

BC,2ED

(2)

延長(zhǎng)ACD,使ACCD,延長(zhǎng)BCE,使BCEC,則△ABC≌△DCE,∴ABDE,量出DE即得AB.(圖略)


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

19、閱讀下面的材料,回答問(wèn)題:
解方程x4-5x2+4=0,這是一個(gè)一元四次方程,根據(jù)該方程的特點(diǎn),它的解法通常是:
設(shè)x2=y,那么x4=y2,于是原方程可變?yōu)閥2-5y+4=0  ①,解得y1=1,y2=4.
當(dāng)y=1時(shí),x2=1,∴x=±1;
當(dāng)y=4時(shí),x2=4,∴x=±2;
∴原方程有四個(gè)根:x1=1,x2=-1,x3=2,x4=-2.
(1)在由原方程得到方程①的過(guò)程中,利用
換元
法達(dá)到
降次
的目的,體現(xiàn)了數(shù)學(xué)的轉(zhuǎn)化思想.
(2)解方程(x2+x)2-4(x2+x)-12=0.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2011--2012學(xué)年安徽省定遠(yuǎn)中學(xué)八年級(jí)下學(xué)期期中數(shù)學(xué)試卷(帶解析) 題型:解答題

閱讀下面的材料,回答問(wèn)題:
解方程x4-5x2+4=0,這是一個(gè)一元四次方程,根據(jù)該方程的特點(diǎn),它的解法通常是:
設(shè)x2=y,那么x4=y2,于是原方程可變?yōu)閥2-5y+4=0 ①,解得y1=1,y2=4.
當(dāng)y=1時(shí),x2=1,∴x=±1;
當(dāng)y=4時(shí),x2=4,∴x=±2;
∴原方程有四個(gè)根:x1=1,x2=-1,x3=2,x4=-2.
(1)在由原方程得到方程①的過(guò)程中,利用___________法達(dá)到________的目的,體現(xiàn)了
數(shù)學(xué)的轉(zhuǎn)化思想.
(2)解方程(x2+x)2-4(x2+x)-12=0.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2011--2012學(xué)年安徽省八年級(jí)下學(xué)期期中數(shù)學(xué)試卷(解析版) 題型:解答題

閱讀下面的材料,回答問(wèn)題:

解方程x4-5x2+4=0,這是一個(gè)一元四次方程,根據(jù)該方程的特點(diǎn),它的解法通常是:

設(shè)x2=y,那么x4=y2,于是原方程可變?yōu)閥2-5y+4=0  ①,解得y1=1,y2=4.

當(dāng)y=1時(shí),x2=1,∴x=±1;

當(dāng)y=4時(shí),x2=4,∴x=±2;

∴原方程有四個(gè)根:x1=1,x2=-1,x3=2,x4=-2.

(1)在由原方程得到方程①的過(guò)程中,利用___________法達(dá)到________的目的,體現(xiàn)了

數(shù)學(xué)的轉(zhuǎn)化思想.

(2)解方程(x2+x)2-4(x2+x)-12=0.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

閱讀下面的材料,回答問(wèn)題:
解方程x4-5x2+4=0,這是一個(gè)一元四次方程,根據(jù)該方程的特點(diǎn),它的解法通常是:
設(shè)x2=y,那么x4=y2,于是原方程可變?yōu)閥2-5y+4=0 ①,解得y1=1,y2=4.
當(dāng)y=1時(shí),x2=1,∴x=±1;
當(dāng)y=4時(shí),x2=4,∴x=±2;
∴原方程有四個(gè)根:x1=1,x2=-1,x3=2,x4=-2.

(1)在由原方程得到方程①的過(guò)程中,利用___________法達(dá)到________的目的,體現(xiàn)了數(shù)學(xué)的轉(zhuǎn)化思想.

(2)解方程(x2+x)2-4(x2+x)-12=0.

查看答案和解析>>

同步練習(xí)冊(cè)答案