如圖,在△OAB中,∠B=90°,∠BOA=30°,OA=4,將△OAB繞點(diǎn)O按逆時(shí)針?lè)较蛐D(zhuǎn)至△OA′B′,C點(diǎn)的坐標(biāo)為(0,4)。
(1)求A′點(diǎn)的坐標(biāo);
(2)求過(guò)C,A′,A三點(diǎn)的拋物線y=ax2+bx+c的解析式;
(3)在(2)中的拋物線上是否存在點(diǎn)P,使以O(shè),A,P為頂點(diǎn)的三角形是等腰直角三角形?若存在,求出所有點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由。
解:(1)過(guò)點(diǎn)A′作A′D垂直于x軸,垂足為D則四邊形OB′A′D為矩形,
在△A′DO中,
A′D=OA′·sin∠A′OD=4×sin60°=
OD=A′B′=AB=2
∴點(diǎn)A′的坐標(biāo)為(2,);
(2)∵C(0,4)在拋物線上,
∴c=4
∴y=ax2+bx+4,
∵A(4,0),A′(2,),
在拋物線y=ax2+bx+4上

解之得
∴所求解析式為;
(3)①若以點(diǎn)O為直角頂點(diǎn),由于OC=OA=4,點(diǎn)C在拋物線上,則點(diǎn)C(0,4)為滿足條件的點(diǎn);
②若以點(diǎn)A為直角頂點(diǎn),則使△PAO為等腰直角三角形的點(diǎn)P的坐標(biāo)應(yīng)為(4,4)或(4,-4),代入拋物線解析式中 知此兩點(diǎn)不在拋物線上;
③若以點(diǎn)P為直角頂點(diǎn),則使△PAO為等腰直角三角形的點(diǎn)P的坐標(biāo)應(yīng)為(2,2)或(2,-2),代入拋物線解析式中 知此兩點(diǎn)不在拋物線上,
綜上述在拋物線上只有一點(diǎn)P(0,4)使△OAP為等腰直角三角形。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•瀘州)如圖,在△OAB中,C是AB的中點(diǎn),反比例函數(shù)y=
k
x
 (k>0)在第一象限的圖象經(jīng)過(guò)A、C兩點(diǎn),若△OAB面積為6,則k的值為(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在△OAB中,OA=OB,以點(diǎn)O為圓心的⊙0經(jīng)過(guò)AB的中點(diǎn)C,直線AO與⊙0相交于點(diǎn)D、E,連接CD、CE.
(1)求證:AB是⊙0的切線;
(2)求證:△ACD∽△AEC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在△OAB中,C是AB的中點(diǎn),反比例函數(shù)y=
kx
(k>0)在第一象限的圖象經(jīng)過(guò)A,C兩點(diǎn),若△OAB面積為6,則k的值為
4
4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在△OAB中,∠B=90°,∠BOA=30°,OA=4,將△OAB繞點(diǎn)O按逆時(shí)針?lè)较蛐D(zhuǎn)至△OA′B′,C點(diǎn)的坐標(biāo)為(0,4).
(1)求A′點(diǎn)的坐標(biāo);
(2)求過(guò)C,A′,A三點(diǎn)的拋物線y=ax2+bx+c的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)(創(chuàng)新學(xué)習(xí))如圖,在△OAB中,∠B=90°,∠BOA=30°,OA=4,將△OAB繞點(diǎn)O按逆時(shí)針?lè)较蛐D(zhuǎn)至△OA′B′,C點(diǎn)的坐標(biāo)為(0,4).
(1)求A′點(diǎn)的坐標(biāo);
 

(2)求過(guò)C,A′,A三點(diǎn)的拋物線y=ax2+bx+c的解析式;
 

(3)在(2)中的拋物線上是否存在點(diǎn)P,使以O(shè),A,P為頂點(diǎn)的三角形是等腰直角三角形?若存在,求出所有點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案