如圖,E是正方形ABCD的邊AB上的動點,EF⊥DE交BC于點F.
(1)求證:△ADE∽△BEF;
(2)設正方形的邊長為4,AE=x,BF=y.請用x的代數(shù)式表示y.
(3)在條件(2)下,當E點在AB上運動到什么位置時,△ADE∽△EDF.
分析:(1)根據(jù)正方形的性質可得∠A=∠B,再根據(jù)同角的余角相等求出∠1=∠3,然后利用兩組角對應相等,兩三角形相似證明;
(2)表示出BE,然后根據(jù)相似三角形的列式整理即可得解;
(3)由△ADE∽△EDF得
AD
AE
=
DE
EF
,再根據(jù)△ADE∽△BEF可得
DE
EF
=
AD
BE
,然后代入數(shù)據(jù)進行計算即可得解.
解答:(1)證明:在正方形ABCD中,∠A=∠B=90°,
∵EF⊥DE,
∴∠2+∠3=180°-90°=90°,
又∵∠1+∠2=180°-90°=90°,
∴∠1=∠3,
∴△ADE∽△BEF;

(2)解:∵正方形ABCD的邊長為4,AE=x,
∴BE=4-x,
∵△ADE∽△BEF,
AD
BE
=
AE
BF
,
4
4-x
=
x
y
,
∴y=-
1
4
x2+x;

(3)解:∵△ADE∽△EDF,
AD
AE
=
DE
EF

∵△ADE∽△BEF,
DE
EF
=
AD
BE
,
AD
AE
=
AD
BE

∴AE=BE,
∴點E為AB的中點,
故,當E點在AB上運動到AB的中點位置時,△ADE∽△EDF.
點評:本題考查了相似三角形的判定與性質,正方形的性質,主要涉及相似三角形對應邊成比例的性質,找出三角形相似的條件并熟記相似三角形的性質是解題的關鍵,用阿拉伯數(shù)字加弧線表示角更形象直觀.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,E是正方形ABCD對角線AC上一點,EF⊥AB,EG⊥BC,F(xiàn)、G是垂足,若正方形ABCD周長為a,則EF+EG等于( 。
A、
1
4
a
B、
1
2
a
C、a
D、2a

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖①,已知△ABC中,AB=AC,點P是BC上的一點,PN⊥AC于點N,PM⊥AB于點M,CG⊥AB于點G點.
(1)則CG、PM、PN三者之間的數(shù)量關系是
 
;
(2)如圖②,若點P在BC的延長線上,則PM、PN、CG三者是否還有上述關系,若有,請說明理由,若沒有,猜想三者之間又有怎樣的關系,并證明你的猜想;
(3)如圖③,AC是正方形ABCD的對角線,AE=AB,點P是BE上任一點,PN⊥AB于點N,PM⊥AC于點M,猜想PM、PN、AC有什么關系;(直接寫出結論)
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

22、如圖,ABCD是正方形,P是對角線BD上一點,過P點作直線EF、GH分別平行于AB、BC,交兩組對邊于E、F、G、H,則四邊形PEDG,四邊形PHBF都是正方形,四邊形PEAH、四邊形PGCF都是矩形,設正方形PEDG的邊長是a,正方形PHBF的邊長是b. 請動手實踐并得出結論:
(1)請你動手測量一些線段的長后,計算正方形PEDG與正方形PHBF的面積之和以及矩形PEAH與矩形PGCF的面積之和.
(2)你能根據(jù)(1)的結果判斷a2+b2與2ab的大小嗎?
(3)當點P在什么位置時,有a2+b2=2ab?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖四邊形AOBC是正方形,點C的坐標是(4
2
,0),動點P、Q同時從點O出發(fā),點P沿著折線OACB的方向運動;點Q沿著折線OBCA的方向運動,設運動時間為t.
(1)求出經過O、A、C三點的拋物線的解析式.
(2)若點Q的運動速度是點P的2倍,點Q運動到邊BC上,連接PQ交AB于點R,當AR=3
2
時,請求出直線PQ的解析式.
(3)若點P的運動速度為每秒1個單位長度,點Q的運動速度為每秒2個單位長度精英家教網(wǎng),兩點運動到相遇停止.設△OPQ的面積為S.請求出S關于t的函數(shù)關系式以及自變量t的取值范圍.
(4)判斷在(3)的條件下,當t為何值時,△OPQ的面積最大?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,AC是正方形ABCD的對角線,點O是AC的中點,點Q是AB上一點,連接CQ,DP⊥CQ于點E,交BC于精英家教網(wǎng)點P,連接OP,OQ;
求證:
(1)△BCQ≌△CDP;
(2)OP=OQ.

查看答案和解析>>

同步練習冊答案