【題目】某中學在全校學生中開展了“地球﹣我們的家園”為主題的環(huán)保征文比賽,評選出一、二、三等獎和優(yōu)秀獎,根據(jù)獎項的情況繪制成如圖所示的兩幅不完整的統(tǒng)計圖,請你根據(jù)圖中提供的信息解答下列問題:

(1)該校獲獎的總?cè)藬?shù)為 , 并把條形統(tǒng)計圖補充完整
(2)求在扇形統(tǒng)計圖中表示“二等獎”的扇形的圓心角的度數(shù);
(3)獲得一等獎的4名學生中有3男1女,現(xiàn)打算從中隨機選出2名學生參加頒獎活動,請用列表或畫樹狀圖的方法求選出的2名學生恰好是1男1女的概率.

【答案】
(1)40,
(2)解:扇形統(tǒng)計圖中表示“二等獎”的扇形的圓心角的度數(shù)為 ×360°=72°
(3)解:畫樹狀圖得:

∵共有12種等可能的結(jié)果,選出的2名學生恰好是1男1女的有6種情況,

∴選出的2名學生恰好是1男1女的概率是: =


【解析】解:(1)總?cè)藬?shù)是:12÷30%=40,

則二等獎的人數(shù)是:40﹣4﹣12﹣16=8.

【考點精析】掌握扇形統(tǒng)計圖和條形統(tǒng)計圖是解答本題的根本,需要知道能清楚地表示出各部分在總體中所占的百分比.但是不能清楚地表示出每個項目的具體數(shù)目以及事物的變化情況;能清楚地表示出每個項目的具體數(shù)目,但是不能清楚地表示出各個部分在總體中所占的百分比以及事物的變化情況.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】在綠化某縣城與高速公路的連接路段中,需購買羅漢松、雪松兩種樹苗共400株,羅漢松樹苗每株60元,雪松樹苗每株70元.相關(guān)資料表明:羅漢松、雪松樹苗的成活率分別為70%,90%

1)若購買這兩種樹苗共用去26500元,則羅漢松、雪松樹苗各購買多少株?

2)綠化工程來年一般都要將死樹補上新苗,現(xiàn)要使該兩種樹苗來年共補苗不多于80株,則羅漢松樹苗至多購買多少株?

3)在(2)的條件下,應(yīng)如何選購樹苗,才能使購買樹苗的費用最低?請求出最低費用.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在四邊形BCDE中,∠C=BED=90°,∠B=60°,延長CDBE得到RtABC,已知CD=2DE=1

1)求證:AB=2BC;

2)求RtABC的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtABC中,∠ABC=90°,AB=8,BC=6,點DAC邊上的動點,點D從點C出發(fā),沿邊CAA運動,當運動到點A時停止,若設(shè)點D運動的時間為t秒,點D運動的速度為每秒1個單位長度

1)當t=2時,CD=______AD=______;(請直接寫出答案)

2)當CBD是直角三角形時,t=______;(請直接寫出答案)

3)求當t為何值時,CBD是等腰三角形?并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+c的圖象如圖,則一次函數(shù)y=ax+c的圖象大致是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知正方形OABC的邊長為2,頂點A,C分別在x軸,y軸的正半軸上,E點是BC的中點,F(xiàn)是AB延長線上一點且FB=1.

(1)求經(jīng)過點O,A,E三點的拋物線解析式;
(2)點P在拋物線上運動,當點P運動到什么位置時△OAP的面積為2,請求出點P的坐標;
(3)在拋物線上是否存在一點Q,使△AFQ是等腰直角三角形?若存在直接寫出點Q的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,正方形ABCO的對角線BOx 軸上,若正方形ABCO的邊長為,點Bx負半軸上,反比例函數(shù)的圖象經(jīng)過C點.

1)求該反比例函數(shù)的解析式;

2)當函數(shù)值-2時,請直接寫出自變量x的取值范圍;

3)若點P是反比例函數(shù)上的一點,且PBO的面積恰好等于正方形ABCO的面積,求點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在整式乘法的學習中,我們采用了構(gòu)造幾何圖形的方法研究代數(shù)式的變形問題,借助直觀、形象的幾何圖形,加深對整式乘法的認識和理解,感悟代數(shù)與幾何的內(nèi)在聯(lián)系,現(xiàn)有邊長分別為,的正方形Ⅰ號和Ⅱ號,以及長為,寬為的長方形Ⅲ號,卡片足夠多,我們可以選取適量的卡片拼接成幾何圖形.(卡片間不重疊、無縫隙)

根據(jù)已有的學習經(jīng)驗,解決下列問題:

1)圖1是由1張Ⅰ號卡片、1張Ⅱ號卡片、2張Ⅲ號卡片拼接成的正方形,那么這個幾何圖形表示的等式是______;

2)小聰想用幾何圖形表示等式,圖2給出了他所拼接的幾何圖形的一部分,請你補全圖形;

3)小聰選取2張Ⅰ號卡片、2張Ⅱ號卡片、5張Ⅲ號卡片拼接成一個長方形,請你畫出拼接后的長方形,并直接寫出幾何圖形表示的等式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某農(nóng)場去年種植了10畝地的南瓜,畝產(chǎn)量為2000kg,根據(jù)市場需要,今年該農(nóng)場擴大了種植面積,并且全部種植了高產(chǎn)的新品種南瓜,設(shè)南瓜種植面積的增長率為 .
(1)則今年南瓜的種植面積為畝;(用含 的代數(shù)式表示)
(2)如果今年南瓜畝產(chǎn)量的增長率是種植面積的增長率的 ,今年南瓜的總產(chǎn)量為60000kg,求南瓜畝產(chǎn)量的增長率.

查看答案和解析>>

同步練習冊答案