操作:在△ABC中,AC=BC=2,∠C=90°,將一塊等腰直角三角板的直角頂點(diǎn)放在斜邊AB的中點(diǎn)P處,將三角板繞點(diǎn)P旋轉(zhuǎn),三角板的兩直角邊分別交射線AC、CB于D、E兩點(diǎn)(不包括射線的端點(diǎn)).如圖1,2,3是旋轉(zhuǎn)三角板得到的圖形中的3種情況.
研究:
(1)三角板繞點(diǎn)P旋轉(zhuǎn),觀察線段PD和PE之間有什么數(shù)量關(guān)系?并結(jié)合如圖2加以證明;
(2)三角板繞點(diǎn)P旋轉(zhuǎn),△PBE是否能成為等腰三角形?若能,指出所有情況(即寫出△PBE為等腰三角形時(shí)CE的長;若不能,請(qǐng)說明理由;
(3)若將三角板的直角頂點(diǎn)放在斜邊AB上的M處,且AM∶MB=1∶3,和前面一樣操作,試問線段MD和ME之間有什么數(shù)量關(guān)系?并結(jié)合如圖4加以證明.
(1)PD=PE;(2)1,,;(3)ME="3MD"
解析試題分析:(1)連接PC,通過證明△PCD≌△PBE,得出PD=PE;
(2)分為點(diǎn)C與點(diǎn)E重合、CE=、CE=1、E在CB的延長線上四種情況進(jìn)行說明;
(3)作MH⊥CB,MF⊥AC,構(gòu)造相似三角形△MDF和△MHE,然后利用對(duì)應(yīng)邊成比例,就可以求出MD和ME之間的數(shù)量關(guān)系.
(1)連接PC,
因?yàn)椤鰽BC是等腰直角三角形,P是AB的中點(diǎn),
∴CP=PB,CP⊥AB,∠ACP=∠ACB=45°.
∴∠ACP=∠B=45°.
又∵∠DPC+∠CPE=∠BPE+∠CPE,
∴∠DPC=∠BPE.
∴△PCD≌△PBE.
∴PD=PE;
(2)△PBE是等腰三角形,
①當(dāng)PE=PB時(shí),此時(shí)點(diǎn)C與點(diǎn)E重合,CE=0;
②當(dāng)BP=BE時(shí),E在線段BC上,CE=;E在CB的延長線上,CE=;
③當(dāng)EP=EB時(shí),CE=1;
(3)過點(diǎn)M作MF⊥AC,MH⊥BC
∵∠C=90°,
∴四邊形CFMH是矩形即∠FMH=90°,MF=CH.
∵∠DMF+∠DMH=∠DMH+∠EMH=90°,
∴∠DMF=∠EMH,
∵∠MFD=∠MHE=90°,
∴△MFD∽△MHE,
考點(diǎn):旋轉(zhuǎn)問題的綜合題
點(diǎn)評(píng):此類問題綜合性強(qiáng),難度較大,在中考中比較常見,一般作為壓軸題,題目比較典型.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
2 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com