(2013•香坊區(qū)一模)把一副三角板如圖(1)放置,其中∠ACB=∠DEC=90°,∠A=45°,∠D=30°,斜邊AB=6厘米,DC=7厘米.把三角板DCE繞點(diǎn)C順時(shí)針旋轉(zhuǎn)15°得到△D1CE1,如圖(2),這時(shí)AB與CD1相交于點(diǎn)O,與D1E1相交于點(diǎn)F.則AD1=    cm.
【答案】分析:首先由旋轉(zhuǎn)的角度為15°,可知∠ACD1=45°.已知∠CAO=45°,即可得AO⊥CD1,然后可在Rt△AOC和Rt△AOD1中,通過解直角三角形求得AD1的長.
解答:解:由題意易知:∠CAB=45°,∠ACD=30°.
若旋轉(zhuǎn)角度為15°,則∠ACO=30°+15°=45°.
∴∠AOC=180°-∠ACO-∠CAO=90°.
在等腰Rt△ABC中,AB=6,則AC=BC=3
同理可求得:AO=OC=3.
在Rt△AOD1中,OA=3,OD1=CD1-OC=4,
由勾股定理得:AD1=5.
點(diǎn)評:此題主要考查了旋轉(zhuǎn)的性質(zhì)以及解直角三角形的綜合應(yīng)用,能夠發(fā)現(xiàn)AO⊥OC是解決此題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•香坊區(qū)一模)方程
3
2x-1
=
2
x+1
的解是
x=5
x=5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•香坊區(qū)一模)春節(jié)期間,某商場貼出促銷海報(bào),內(nèi)容如圖1,在商場活動(dòng)期間,李明和同學(xué)隨機(jī)調(diào)查了部分參與活動(dòng)的顧客,并繪制成如圖2的頻數(shù)分布直方圖.統(tǒng)計(jì)結(jié)果顯示,獲得50元購物券的人數(shù)占被調(diào)查顧客的5.5%.

解答下列問題:
(1)在這次調(diào)查中,參與調(diào)查活動(dòng)的顧客有多少人?
(2)通過計(jì)算,補(bǔ)全頻數(shù)分布直方圖;
(3)若商場每天約有2000人摸獎(jiǎng),請估算商場一天送出的購物券總金額是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•香坊區(qū)一模)王叔叔決定在承包的荒山上種蘋果樹,第一次用1000元購進(jìn)了一批樹苗,第二次又用了1000元購進(jìn)該種樹苗,但這次每棵樹苗的進(jìn)價(jià)是第一次進(jìn)價(jià)的2倍,購進(jìn)數(shù)量比第一次少了100棵.
(1)求第一次每棵樹苗的進(jìn)價(jià)是多少元?
(2)一年后,樹苗的成活率為85%,每棵果樹平均產(chǎn)蘋果30斤,王叔叔將兩批果樹所產(chǎn)蘋果按同一價(jià)格全部銷售完畢后獲利不低于89800元,求每斤蘋果的售價(jià)至少是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•香坊區(qū)一模)如圖,在平面直角坐標(biāo)系中,點(diǎn)O為坐標(biāo)原點(diǎn),直線y=
3
4
x+3m交x軸于點(diǎn)A,交y軸于點(diǎn)B,線段BC為△ABC中∠ABO的角平分線,OC=3.
(1)求m的值;
(2)點(diǎn)A關(guān)于點(diǎn)O的對稱點(diǎn)為D.過點(diǎn)D作x軸的垂線DE,動(dòng)點(diǎn)P從D出發(fā),以每秒一個(gè)單位的速度沿DE方向運(yùn)動(dòng),過P作x軸的平行線分別交線段AB、BC于點(diǎn)M、N,設(shè)MN的長度為y(y≠0),P點(diǎn)的運(yùn)動(dòng)時(shí)間為t,當(dāng)0<t<3時(shí),求y與t之間的函數(shù)關(guān)系式;
(3)在(2)的條件下,當(dāng)以P為圓心,y為半徑的⊙P上有且只有一點(diǎn)到直線AB的距離為
14
3
時(shí),求此時(shí)t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•香坊區(qū)一模)已知E為△ABC內(nèi)部一點(diǎn),AE延長線交邊BC于點(diǎn)D,連接BE、CE,∠BED=∠BAC=2∠DEC.

(1)如圖①,若AC=AB,求證:BE=2AE;
(2)如圖②,在(1)的條件下,將∠ABC沿BC翻折得到∠FBC,AE延長線經(jīng)過點(diǎn)F,M為DF的中點(diǎn),連接CM并延長交BF于點(diǎn)G.若CG=3
2
,AE=2DE,求BD的長.

查看答案和解析>>

同步練習(xí)冊答案