【題目】某企業(yè)開(kāi)展獻(xiàn)愛(ài)心扶貧活動(dòng),將購(gòu)買(mǎi)的60噸大米運(yùn)往貧困地區(qū)幫扶貧困居民,現(xiàn)有甲、乙兩種貨車(chē)可以租用.已知一輛甲種貨車(chē)和3輛乙種貨車(chē)一次可運(yùn)送29噸大米,2輛甲種貨車(chē)和3輛乙種貨車(chē)一次可運(yùn)送37噸大米.
(1)求每輛甲種貨車(chē)和每輛乙種貨車(chē)一次分別能裝運(yùn)多少?lài)嵈竺祝?/span>
(2)已知甲種貨車(chē)每輛租金為500元,乙種貨車(chē)每輛租金為450元,該企業(yè)共租用8輛貨車(chē).請(qǐng)求出租用貨車(chē)的總費(fèi)用w(元)與租用甲種貨車(chē)的數(shù)量x(輛)之間的函數(shù)關(guān)系式.
(3)在(2)的條件下,請(qǐng)你為該企業(yè)設(shè)計(jì)如何租車(chē)費(fèi)用最少?并求出最少費(fèi)用是多少元?
【答案】(1)甲車(chē)裝8噸,乙車(chē)裝7噸;(2)w=500x+450(8﹣x)=50x+3600(1≤x≤8);
(3)租用4輛甲車(chē),4輛乙車(chē)時(shí)總運(yùn)費(fèi)最省,為50×4+3600=3800元.
【解析】試題分析:(1)根據(jù)題意列出方程組求解即可;
(2)將兩車(chē)的費(fèi)用相加即可求得總費(fèi)用的函數(shù)解析式;
(3)根據(jù)一次函數(shù)得到當(dāng)x越小時(shí),總費(fèi)用越小,分別代入1,2,3,4得到最小值即可.
試題解析:
解:(1)設(shè)甲種貨車(chē)x輛,乙種貨車(chē)y輛,
根據(jù)題意得: ,
解得: ,
答:甲車(chē)裝8噸,乙車(chē)裝7噸;
(2)設(shè)甲車(chē)x輛,則乙車(chē)為(8﹣x)輛,
根據(jù)題意得:w=500x+450(8﹣x)=50x+3600(1≤x≤8);
(3)∵當(dāng)x=1時(shí),則8﹣x=7,8+7×7=57<60噸,不合題意;
當(dāng)x=2時(shí),則8﹣x=6,8×2+7×6=58<60噸,不合題意;
當(dāng)x=3時(shí),則8﹣x=5,8×3+7×5=59<60噸,不合題意;
當(dāng)x=4時(shí),則8﹣x=4,8×4+7×4=60噸,符合題意;
∴租用4輛甲車(chē),4輛乙車(chē)時(shí)總運(yùn)費(fèi)最省,為50×4+3600=3800元.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】丹尼斯超市舉行有獎(jiǎng)促銷(xiāo)活動(dòng):顧客凡一次性購(gòu)買(mǎi)滿元者即可獲得一次搖獎(jiǎng)機(jī)會(huì).搖獎(jiǎng)機(jī)是一個(gè)圓形轉(zhuǎn)盤(pán),被等分成個(gè)扇形,如果轉(zhuǎn)盤(pán)停止后,指針正好對(duì)準(zhǔn)紅黃或藍(lán)色區(qū)域,顧客就可以分別獲得一、二、三等獎(jiǎng)獎(jiǎng)金依次為元、元、元一次性購(gòu)物滿元者,如果不搖獎(jiǎng)可返還獎(jiǎng)金元.
(1)搖獎(jiǎng)一次,獲一等獎(jiǎng)、二等獎(jiǎng)、三等獎(jiǎng)的概率分別是多少?
(2)小李一次性購(gòu)物滿元他是參與搖獎(jiǎng)劃算,還是領(lǐng)元現(xiàn)金劃算?請(qǐng)你幫他算算
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知正方形ABCD,P是對(duì)角線AC上任意一點(diǎn),E為AD上的點(diǎn),且∠EPB=90°,PM⊥AD,PN⊥AB.
(1)求證:四邊形PMAN是正方形;
(2)求證:EM=BN.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在等邊△ABC中,點(diǎn)E在AB上,點(diǎn)D在CB延長(zhǎng)線上,且ED=EC.
(1)當(dāng)點(diǎn)E為AB中點(diǎn)時(shí),如圖①,AE DB(填“﹥”“﹤”或“=”),并說(shuō)明理由;
(2)當(dāng)點(diǎn)E為AB上任意一點(diǎn)時(shí),如圖②,AE DB(填“﹥”“﹤”或“=”),并說(shuō)明理由;(提示:過(guò)點(diǎn)E作EF∥BC,交AC于點(diǎn)F)
(3)在等邊△ABC中,點(diǎn)E在直線AB上,點(diǎn)D在直線BC上,且ED=EC.若△ABC的邊長(zhǎng)為1,AE=2,請(qǐng)你畫(huà)出圖形,并直接寫(xiě)出相應(yīng)的CD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我市某中學(xué)為了了解孩子們對(duì)《中國(guó)詩(shī)詞大會(huì)》,《挑戰(zhàn)不可能》,《最強(qiáng)大腦》,《超級(jí)演說(shuō)家》,《地理中國(guó)》五種電視節(jié)目的喜愛(ài)程度,隨機(jī)在七、八、九年級(jí)抽取了部分學(xué)生進(jìn)行調(diào)查(每人只能選擇一種喜愛(ài)的電視節(jié)目),并將獲得的數(shù)據(jù)進(jìn)行整理,繪制出以下兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)根據(jù)兩幅統(tǒng)計(jì)圖中的信息回答下列問(wèn)題:
(1)本次調(diào)查中共抽取了 名學(xué)生.
(2)補(bǔ)全條形統(tǒng)計(jì)圖.
(3)在扇形統(tǒng)計(jì)圖中,喜愛(ài)《地理中國(guó)》節(jié)目的人數(shù)所在的扇形的圓心角是 度.
(4)若該學(xué)校有2000人,請(qǐng)你估計(jì)該學(xué)校喜歡《最強(qiáng)大腦》節(jié)目的學(xué)生人數(shù)是多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)O為坐標(biāo)原點(diǎn),直線y=﹣x+b與坐標(biāo)軸交于C,D兩點(diǎn),直線AB與坐標(biāo)軸交于A,B兩點(diǎn),線段OA,OC的長(zhǎng)是方程x2﹣3x+2=0的兩個(gè)根(OA>OC).
(1)求點(diǎn)A,C的坐標(biāo);
(2)直線AB與直線CD交于點(diǎn)E,若點(diǎn)E是線段AB的中點(diǎn),反比例函數(shù)y=(k≠0)的圖象的一個(gè)分支經(jīng)過(guò)點(diǎn)E,求k的值;
(3)在(2)的條件下,點(diǎn)M在直線CD上,坐標(biāo)平面內(nèi)是否存在點(diǎn)N,使以點(diǎn)B,E,M,N為頂點(diǎn)的四邊形是菱形?若存在,請(qǐng)直接寫(xiě)出滿足條件的點(diǎn)N的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是⊙O的直徑,C是⊙O上的一點(diǎn),DA與⊙O相切于點(diǎn)A,DA=DC=.
(1)求證:DC是⊙O的切線;
(2)若∠CAB=30°,求陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,∠ABC=60°,AD、CE分別平分∠BAC、∠ACB,AD、CE相交于點(diǎn)P
(1) 求∠CPD的度數(shù)
(2) 若AE=3,CD=7,求線段AC的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,在梯形ABCD中,AB∥CD,∠D=90°,AD=CD=2,點(diǎn)E在邊AD上(不與點(diǎn)A、D重合),∠CEB=45°,EB與對(duì)角線AC相交于點(diǎn)F,設(shè)DE=x.
(1)用含x的代數(shù)式表示線段CF的長(zhǎng);
(2)如果把△CAE的周長(zhǎng)記作C△CAE,△BAF的周長(zhǎng)記作C△BAF,設(shè)=y,求y關(guān)于x的函數(shù)關(guān)系式,并寫(xiě)出它的定義域;
(3)當(dāng)∠ABE的正切值是時(shí),求AB的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com