如圖,∠ACB=60°,半徑為2的⊙0切BC于點(diǎn)C,若將⊙O在CB上向右滾動(dòng),則當(dāng)滾動(dòng)到⊙O與CA也相切時(shí),圓心O移動(dòng)的水平距離為______.
如圖,連接OC,OE,OF,
∵⊙O與AC和BC都相切,E和F為切點(diǎn),
∴OF⊥BC,OE⊥AC,
∵∠ACB=60°,OF=OE,
∴∠BCO=30°,
∵OF=2,
∴OC=4,
∴由勾股定理得,OF2+CF2=CO2
∴CF=2
3

故答案為:2
3

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

若⊙O的半徑長是4cm,圓外一點(diǎn)A與⊙O上各點(diǎn)的最遠(yuǎn)距離是12cm,則自A點(diǎn)所引⊙O的切線長為( 。
A.16cmB.4
3
cm
C.4
2
cm
D.4
6
cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知⊙O的割線PAB交⊙O于A、B兩點(diǎn),PO與⊙O交于點(diǎn)C,且PA=AB=6cm,PO=12cm,
(Ⅰ)求⊙O的半徑;
(Ⅱ)求△PBO的面積.(結(jié)果可帶根號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,⊙O的弦ADBC,過點(diǎn)D的切線交BC的延長線于點(diǎn)E,ACDE交BD于點(diǎn)H,DO及延長線分別交AC、BC于點(diǎn)G、F.
(1)求證:DF垂直平分AC;
(2)求證:FC=CE;
(3)若弦AD=5cm,AC=8cm,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

在△ABC中,AB=AC=10,BC=12,以A為圓心,分別以下列長為半徑作圓,請你判定⊙A與直線BC的位置關(guān)系.(1)6;(2)8;(3)12.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖:EB、EC是⊙O的兩條切線,B、C是切點(diǎn),A、D是⊙O上兩點(diǎn),如果∠E=46°,∠DCF=32°,則∠A的度數(shù)是______度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,等腰三角形ABC中,AB=AC,以AC為直徑作⊙O交BC于點(diǎn)D,過點(diǎn)D作DE⊥AB于E,連接AD,下列結(jié)論:①CD=BD;②DE為⊙O的切線;③△ADE△ACD;④AD2=AE•AC,其中正確結(jié)論個(gè)數(shù)( 。
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,PA為⊙O的切線,A為切點(diǎn),過A作OP的垂線AB,垂足為點(diǎn)C,交⊙O于點(diǎn)B,延長BO與⊙O交于點(diǎn)D,與PA的延長線交于點(diǎn)E.
(1)求證:PB為⊙O的切線;
(2)若tan∠ABE=
1
2
,求sin∠E.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,D是半徑為R的⊙O上一點(diǎn),過點(diǎn)D作⊙O的切線交直徑AB的延長線于點(diǎn)C,下列四個(gè)條件:①AD=CD;②∠A=30°;③∠ADC=120°;④DC=
3
R.其中,使得BC=R的有( 。
A.①②B.①③④C.②③④D.①②③④

查看答案和解析>>

同步練習(xí)冊答案