在矩形ABCD中,點O在對角線BD上,以OD為半徑的⊙O與AD、BD分別交于點E、F,且∠ABE=∠DBC.
 
(1)求證:BE與⊙O相切;
(2)若,CD=2,求⊙O的半徑.

(1)連接OE,根據(jù)矩形的性質可得AD∥BC,∠C=∠A=90°,即可得到∠3=∠DBC,∠ABE+∠1=90°,再結合OD=OE,∠ABE=∠DBC可得∠2=∠3=∠ABE,從而可以證得結論;(2)

解析試題分析:(1)連接OE,根據(jù)矩形的性質可得AD∥BC,∠C=∠A=90°,即可得到∠3=∠DBC,∠ABE+∠1=90°,再結合OD=OE,∠ABE=∠DBC可得∠2=∠3=∠ABE,從而可以證得結論;
(2)由∠ABE =∠DBC可得,即可求得DB的長,再根據(jù)勾股定理求得DE的長,
連接EF,根據(jù)圓周角定理可得∠DEF=∠A=90°,再證得,根據(jù)相似三角形的性質即可求得結果.
(1)連接OE

∵四邊形ABCD是矩形
∴AD∥BC,∠C=∠A=90°
∴∠3=∠DBC,∠ABE+∠1=90°
∵OD=OE,∠ABE=∠DBC
∴∠2=∠3=∠ABE
∴∠2+∠1=90°
∴∠BEO=90°
∵點E在⊙O上
∴BE與⊙O相切;
(2)∵∠ABE =∠DBC

∵DC=2,∠C=90°
∴DB=6
∵∠A=90°
∴BE=3AE  
∵AB=CD=2
利用勾股定理,得

連接EF  

∵DF是⊙O的直徑,
∴∠DEF=∠A=90°
∴AB∥EF
 
 


∴⊙O的半徑為.
考點:矩形的性質,切線的判定,正弦,勾股定理,圓周角定理,相似三角形的判定和性質
點評:解答本題的關鍵是熟練掌握切線垂直于經過切點的半徑;相似三角形的對應邊成比例,注意對應字母在對應位置上.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

1、如圖,在矩形ABCD中,點E是BC上一點,AE=AD,DF⊥AE,垂足為F.線段DF與圖中的哪一條線段相等?先將你猜想出的結論填寫在下面的橫線上,然后再加以證明.即DF=
AB
.(寫出一條線段即可)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

14、如圖所示,在矩形ABCD中,點E在BC上,AE=AD,DF⊥AE于F,若AB=3,BC=5,則四邊形DFEC的面積是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在矩形ABCD中,點E,F(xiàn)分別在邊AD,BC上,BE⊥EF,AB=6cm,AD=11cm(其中AE>DE),DF=4cm,求BE的長.精英家教網

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網如圖,在矩形ABCD中,點E、F、G、H分別在邊AB、BC、CD、DA上,點P在矩形ABCD內,若AB=4,BC=6,AE=CG=3,BF=DH=4,四邊形AEPH的面積為5,求四邊形PFCG的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•泰州)如圖,在矩形ABCD中,點P在邊CD上,且與C、D不重合,過點A作AP的垂線與CB的延長線相交于點Q,連接PQ,M為PQ中點.
(1)求證:△ADP∽△ABQ;
(2)若AD=10,AB=20,點P在邊CD上運動,設DP=x,BM2=y,求y與x的函數(shù)關系式,并求線段BM的最小值;
(3)若AD=10,AB=a,DP=8,隨著a的大小的變化,點M的位置也在變化.當點M落在矩形ABCD外部時,求a的取值范圍.

查看答案和解析>>

同步練習冊答案