精英家教網 > 初中數學 > 題目詳情

【題目】已知∠AOB是一個直角,作射線OC,再分別作∠AOC和∠BOC的平分線ODOE

1)如圖,當∠BOC40°時,求∠DOE的度數;

2)如圖,當射線OC在∠AOB內繞O點旋轉時,∠DOE的大小是否發(fā)生變化,說明理由;

3)當射線OC在∠AOB外繞O點旋轉且∠AOC為鈍角時,畫出圖形,直接寫出∠DOE的度數(不必寫過程).

【答案】145°;(2)∠DOE的大小不變,理由見解析;(345°或135°;畫圖見解析.

【解析】

1)如圖①,當∠BOC40°時,求∠DOE的度數;

2)如圖②,當射線OC在∠AOB內繞O點旋轉時,∠DOE的大小是否發(fā)生變化,說明理由;

3)當射線OC在∠AOB外繞O點旋轉且∠AOC為鈍角時,畫出圖形,直接寫出相應的∠DOE的度數(不必寫出過程).

解:(1)如圖,∠AOC90°﹣∠BOC50°

OD、OE分別平分∠AOC和∠BOC,

∴∠CODAOC25°,∠COEBOC20°,

∴∠DOE=∠COD+COE45°;

2)∠DOE的大小不變,理由是:

DOE=∠COD+COEAOC+COB(∠AOC+COB)=AOB45°;

3)∠DOE的大小發(fā)生變化情況為,

如圖3,則∠DOE45°;如圖4,則∠DOE135°,

分兩種情況:如圖3所示,

OD、OE分別平分∠AOC和∠BOC

∴∠CODAOC,∠COEBOC

∴∠DOE=∠COD﹣∠COE(∠AOC﹣∠BOC)=45°;

如圖4所示,∵OD、OE分別平分∠AOC和∠BOC

∴∠CODAOC,∠COEBOC,

∴∠DOE=∠COD+COE(∠AOC+BOC)=×270°135°

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】矩形紙片ABCD,AD=4,AB=3,如果點E在邊BC上,將紙片沿AE折疊,使點B落在點F處,聯結FC,當EFC是直角三角形時,那么BE的長為____________

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】暑假期間,小李同學勤工儉學購進一批礦泉水和運動飲料在運動場進行銷售,其進價與售價如下表:

進價(元/瓶)

售價(元/瓶)

礦泉水

0.75

2

運動飲料

3

4

(1)若小李同學購進礦泉水和運動飲料共 30 瓶,用去了 67.5 元,并且全部售完,問小李同學在該買賣中賺了多少錢?

(2)為了進一步滿足同學們的需求,小李同學決定用不超過 400 元的資金購進礦泉水和運動飲料共200 瓶,問最多購進多少瓶運動飲料?

(3)小李同學賺錢后,為了回報社會,買了一批書籍送給貧困山區(qū)的孩子,如果分給每位孩子 4 本書,那么剩下 10 本書;如果分給每位孩子 5 本書,那么最后一位孩子分得的書不足 4 本,但至少1本,則小李同學買了多少本書?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某商場對A、B兩款運動鞋的銷售情況進行了為期5天的統(tǒng)計,得到了這兩款運動鞋每天的銷售量及總銷售額統(tǒng)計圖(如圖所示).已知第4B款運動鞋的銷售量是A款的

1)求第4B款運動鞋的銷售量

2)這5天期間,B款運動鞋每天銷售量的平均數和中位數分別是多少?

3)若在這5天期間兩款運動鞋的銷售單價保持不變,求第3天的總銷售額(銷售額=銷售單價×銷售量)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知、、、是正方形網格紙上的四個格點,根據要求在網格中畫圖并標注相關字母.

①畫線段.

②畫直線.

③過點的垂線,垂足為.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】甲、乙兩家商場以同樣的價格出售同樣的電器,但各自推出的優(yōu)惠方案不同,甲商場規(guī)定:凡超過元的電器,超出的金額按收;乙商場規(guī)定:凡超過元的電器,超出的金額按收取,某顧客購買的電器價格是.

1)當時,分別用代數式表示在兩家商場購買電器所需付的費用

2)當時,該顧客應選擇哪一家商場購買比較合算?說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在下列解答中,填空或填寫適當的理由:

1,(已知)

______________.___________________________________________

______________________________________________________

2_______,(已知)

;(___________________________________

3_______________,(已知)

__________________________._______________________________

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知直線ABCD,直線EFAB、CD分別相交于點EF

1)如圖1,若∠160°,求∠2、∠3的度數;

2)若點是平面內的一個動點,連結PE、PF,探索EPF、PEBPFD三個角之間的關系:

當點P在圖2的位置時,可得EPFPEBPFD;請閱讀下面的解答過程,并填空(理由或數學式).

解:如圖2,過點PMNAB

EPMPEB(               。

ABCD(已知),MNAB(作圖),

MNCD(                )

∴∠MPFPFD(               。

PEBPFD(等式的性質)

EPFPEBPFD

當點P在圖3的位置時,請直接寫出EPF、PEB、PFD三個角之間的關系: ;

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖1,已知點Aa,0),B0b),且a、b滿足, ABCD的邊ADy軸交于點E,且EAD中點,雙曲線經過C、D兩點.

1)求k的值;

2)點P在雙曲線上,點Qy軸上,若以點AB、P、Q為頂點的四邊形是平行四邊形,試求滿足要求的所有點PQ的坐標;

查看答案和解析>>

同步練習冊答案