【題目】某公司舉行周年慶典,決定訂購一批印有公司logo的記事本贈送給客戶,購買甲種記事本共花費3000元,購買乙種記事本共花費2100元,購買甲種記事本的數(shù)量是購買乙種記事本數(shù)量的2倍,且購買一個乙種記事本比購買一個甲種記事本多花20元.
(1)求購買一個甲種記事本,一個乙種記事本各需多少元?
(2)由于公司業(yè)務(wù)的擴大,公司決定再次購買甲、乙兩種記事本共40個,且乙種記事本不少于23個,預(yù)算金額不超過2400元,購買時恰逢該店對兩種記事本的售價進行調(diào)整,甲種記事本售價比第一次購買時提高了10%,乙種記事本售價比第一次購買時降低了10%,請問該公司有哪幾種方案購買這批記事本?
【答案】(1)購買一個甲種記事本需要50元,購買一個乙種記事本需要70元.(2)該公司有三種購買方案:①購進甲種記事本17個,乙種記事本23個;②購進甲種記事本16個,乙種記事本24個;③購進甲種記事本15個,乙種記事本25個.
【解析】
(1)設(shè)購買一個甲種記事本需要x元,則購買一個乙種記事本需要(x+20)元,根據(jù)數(shù)量=總價÷單價結(jié)合用3000元購買甲種記事本的數(shù)量是用2100元購買乙種記事本數(shù)量的2倍,即可得出關(guān)于x的分式方程,解之經(jīng)檢驗后即可得出結(jié)論;
(2)設(shè)該公司購進乙種記事本m個,則購進甲種記事本(40-m)個,根據(jù)總價=單價×數(shù)量結(jié)合預(yù)算金額不超過2400元,即可得出關(guān)于m的一元一次不等式組,解之即可得出m的取值范圍,結(jié)合m為正整數(shù)即可得出m的值,進而可找出各購買方案.
(1)設(shè)購買一個甲種記事本需要x元,則購買一個乙種記事本需要(x+20)元,
依題意,得:,
解得:x=50,
經(jīng)檢驗,x=50是原方程的解,且符合題意,
∴x+20=70.
答:購買一個甲種記事本需要50元,購買一個乙種記事本需要70元.
(2)設(shè)該公司購進乙種記事本m個,則購進甲種記事本(40-m)個,
依題意,得:,
解得:23≤m≤25.
又∵m為正整數(shù),
∴m=23,24或25,
∴該公司有三種購買方案:①購進甲種記事本17個,乙種記事本23個;②購進甲種記事本16個,乙種記事本24個;③購進甲種記事本15個,乙種記事本25個.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】媽媽在超市購買兩種優(yōu)質(zhì)水果.先購買了2千克甲水果和3千克乙水果,共花費90元;后又購買了1千克甲水果和2千克乙水果,共花費55元.(每次兩種水果的售價都不變)
(1)求甲水果和乙水果的售價分別是每千克多少元;
(2)如果還需購買兩種水果共12千克,要求乙水果的數(shù)量不少于甲水果數(shù)量的2倍,請設(shè)計一種購買方案,使所需總費用最低.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,過y軸上一點A作平行于x軸的直線交某函數(shù)圖象于點D,點P是x軸上一動點,連接DP,過點P作DP的垂線交y軸于點E(E在線段OA上,E不與點O重合),則稱∠DPE為點D,P,E的“平橫縱直角”.圖1為點D,P,E的“平橫縱直角”的示意圖.如圖2,在平面直角坐標(biāo)系xOy中,已知二次函數(shù)圖象與y軸交于點F(0,m),與x軸分別交于點B(﹣3,0),C(12,0).若過點F作平行于x軸的直線交拋物線于點N.
(1)點N的橫坐標(biāo)為 ;
(2)已知一直角為點N,M,K的“平橫縱直角”,若在線段OC上存在不同的兩點M1、M2,使相應(yīng)的點K1、K2都與點F重合,試求m的取值范圍;
(3)設(shè)拋物線的頂點為點Q,連接BQ與FN交于點H,當(dāng)45°≤∠QHN≤60°時,求m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知,點、、、…在射線ON上,點、、、…在射線OM上,、、…均為等邊三角形,若,則的邊長為( )
A.16B.64C.128D.256
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線AB:y=kx+b交拋物線y=于點A、B(A在B點左側(cè)),過點B的直線BD與拋物線只有唯一公共點,且與y軸負半軸交于點D.
(1)若k=,b=2,求點A、B兩點坐標(biāo);
(2)AB交y軸于點C,若BC=CD,OC=CE,點E在y軸正半軸上,EF∥x軸,交拋物線于點F,求EF的長;
(3)在(1)的條件下,P為射線BD上一動點,PN∥y軸交拋物線于點N,交直線于點Q,PM∥AN交直線于點M,求MQ的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】△ABC在平面直角坐標(biāo)系中的位置如圖所示.
(1)作出與△ABC關(guān)于x軸對稱的△A1B1C1;
(2)將△ABC向左平移4個單位長度,畫出平移后的△A2B2C2;
(3)若在如圖的網(wǎng)格中存在格點P,使點P的橫、縱坐標(biāo)之和等于點C的橫、縱坐標(biāo)之和,請寫出所有滿足條件的格點P的坐標(biāo)(C除外).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,中,平分交于點,在上截取,過點作交于點.求證:四邊形是菱形;
如圖,中,平分的外角交的延長線于點,在的延長線上截取,過點作交的延長線于點.四邊形還是菱形嗎?如果是,請證明;如果不是,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】湘一“追逐夢想”數(shù)學(xué)興趣小組編了一個“詩·遠方”的計算程序,規(guī)定:輸入數(shù)據(jù),時,若輸出的是代數(shù)式稱為“詩”,若輸出的是等式稱為“遠方”.
回答下列問題:
(1)當(dāng)輸入正整數(shù),時,得到“遠方”和“詩”,若“遠方”為,求證“詩”:是完全平方式.(溫馨提示:對于一個整式,如果存在另一個整式,使的條件,則稱是完全平方式,比如,是完全平方式.)
(2)當(dāng)輸入,時,求“遠方”:的,的正整數(shù)解.
(3)若正數(shù),互為倒數(shù),求“詩”:的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形中,,,動點、分別以、的速度從點、同時出發(fā),點從點向點移動.
若點從點移動到點停止,點隨點的停止而停止移動,點、分別從點、同時出發(fā),問經(jīng)過多長時間、兩點之間的距離是?
若點沿著移動,點、分別從點、同時出發(fā),點從點移動到點停止時,點隨點的停止而停止移動,試探求經(jīng)過多長時間的面積為?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com