運(yùn)用“同一圖形的面積不同表示方式相同”可以證明一類含有線段的等式,這種解決問題的方法我們稱之為面積法.

1.如圖1,在等腰三角形ABC中,AB=AC,AC邊上的高為,M是底邊BC上的任意一點(diǎn),點(diǎn)M到腰AB、AC的距離分別為.連接AM,可得結(jié)論+=.當(dāng)點(diǎn)M在BC延長線上時(shí),、之間的等量關(guān)系式是               .(直接寫出結(jié)論不必證明).

2.應(yīng)用:平面直角坐標(biāo)系中有兩條直線,若上的一點(diǎn)M到的距離是1.請(qǐng)運(yùn)用(1)的條件和結(jié)論求出點(diǎn)M的坐標(biāo).

 

 

1.).                      

2.在 中,令=0得= 3;令= 0得=-4 ,則:

A(-4,0),B(0,3)同理求得C(1,0).

AB== 5    AC=5 

所以AB=AC,即△ABC為等腰三角形.

① 當(dāng)點(diǎn)M在BC邊上時(shí),由得:

1+=OC.=3-1=2,把它代入中求得:=8,

∴M(,2);

②當(dāng)點(diǎn)M在CB延長線上時(shí),由得:

-1=OC. =3+1=4,把它代入中求得:= ,

∴M(,4).                     

∴點(diǎn)M的坐標(biāo)為(,2)或(,4).

解析:略

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

大家在學(xué)完勾股定理的證明后發(fā)現(xiàn)運(yùn)用“同一圖形的面積不同表示方式相同”可以證明一類含有線段的等式,這種解決問題的方法我們稱之為面積法.學(xué)有所用:在等腰三角形ABC中,AB=AC,其一腰上的高為h,M是底邊BC上的任意一點(diǎn),M到腰AB、AC的距離分別為h1、h2
(1)請(qǐng)你結(jié)合圖形來證明:h1+h2=h;
精英家教網(wǎng)
(2)當(dāng)點(diǎn)M在BC延長線上時(shí),h1、h2、h之間又有什么樣的結(jié)論.請(qǐng)你畫出圖形,并直接寫出結(jié)論不必證明;
(3)利用以上結(jié)論解答,如圖在平面直角坐標(biāo)系中有兩條直線l1:y=
3
4
x+3,l2:y=-3x+3,若l2上的一點(diǎn)M到l1的距離是
3
2
.求點(diǎn)M的坐標(biāo).
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

運(yùn)用“同一圖形的面積不同表示方式相同”可以證明一類含有線段的等式,這種解決問題的方法我們稱之為面積法.
(1)如圖1,在等腰三角形ABC中,AB=AC,AC邊上的高為h,M是底邊BC上的任意一點(diǎn),點(diǎn)M到腰AB、AC的距離分別為h1、h2.請(qǐng)用面積法證明:h1+h2=h;
精英家教網(wǎng)
(2)當(dāng)點(diǎn)M在BC延長線上時(shí),h1、h2、h之間的等量關(guān)系式是
 
;(直接寫出結(jié)論不必證明)
(3)如圖2在平面直角坐標(biāo)系中有兩條直線l1:y=
34
x+3、l2:y=-3x+3,若l2上的一點(diǎn)M到l1的距離是1,請(qǐng)運(yùn)用(1)、(2)的結(jié)論求出點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

運(yùn)用“同一圖形的面積不同表示方式相同”可以證明一類含有線段的等式,這種解決問題的方法我們稱之為面積法.
【小題1】如圖1,在等腰三角形ABC中,AB=AC,AC邊上的高為,M是底邊BC上的任意一點(diǎn),點(diǎn)M到腰AB、AC的距離分別為.連接AM,可得結(jié)論+=.當(dāng)點(diǎn)M在BC延長線上時(shí),、之間的等量關(guān)系式是               .(直接寫出結(jié)論不必證明).

【小題2】應(yīng)用:平面直角坐標(biāo)系中有兩條直線、,若上的一點(diǎn)M到的距離是1.請(qǐng)運(yùn)用(1)的條件和結(jié)論求出點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012-2013學(xué)年江蘇省鹽城市阜寧縣羊寨中學(xué)八年級(jí)下學(xué)期期中考試數(shù)學(xué)試卷(帶解析) 題型:解答題

運(yùn)用“同一圖形的面積不同表示方式相同”可以證明一類含有線段的等式,這種解決問題的方法我們稱之為面積法.
(1)如圖,在等腰三角形ABC中,AB=AC,AC邊上的高為,M是底邊BC上的任意一點(diǎn),點(diǎn)M到腰AB、AC的距離分別為、.連接AM,可得結(jié)論+=.當(dāng)點(diǎn)M在BC延長線上時(shí),、、之間的等量關(guān)系式是               .(直接寫出結(jié)論不必證明).

(2)應(yīng)用:平面直角坐標(biāo)系中有兩條直線、,若上的一點(diǎn)M到的距離是1.請(qǐng)運(yùn)用(1)的條件和結(jié)論求出點(diǎn)M的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案