【題目】某校學生在電腦培訓前后各參加了一次水平相同的考試,考分都以同一標準劃分成“不合格”、“合格”、“優(yōu)秀”三個等級.為了了解電腦培訓的效果,隨機抽取其中32名學生兩次考試考分等級制成統(tǒng)計圖(如圖),試回答下列問題:
(1)這32名學生經(jīng)過培訓,考分等級“不合格”的百分比由下降到
(2)估計該校640名學生,培訓后考分等級為“合格”與“優(yōu)秀”的學生共有多少名.

【答案】
(1)75%;25%
(2)解:據(jù)題意得:培訓后32名學生中“合格”與“優(yōu)秀”的學生共有24名

考分等級為“合格”與“優(yōu)秀”的學生人數(shù)約占 =

∴培訓后全?挤值燃墳椤昂细瘛迸c“優(yōu)秀”的學生人數(shù)約有:640× =480名


【解析】(1)用培訓前后不合格的人數(shù)除以總人數(shù)即可得到培訓前后的不合格率;(2)求出培訓后考分等級為合格與優(yōu)秀的學生數(shù),分別除以總人數(shù)乘以全校總人數(shù)即可.
【考點精析】掌握條形統(tǒng)計圖是解答本題的根本,需要知道能清楚地表示出每個項目的具體數(shù)目,但是不能清楚地表示出各個部分在總體中所占的百分比以及事物的變化情況.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】(本題12分)如圖1,在平面直角坐標系中,四邊形OABC各頂點的坐標分別O(0,0),A(3, ),B(9,5 ),C(14,0).動點P與Q同時從O點出發(fā),運動時間為t秒,點P沿OC方向以1單位長度/秒的速度向點C運動,點Q沿折線OAABBC運動,在OA,AB,BC上運動的速度分別為3, , (單位長度/秒)﹒當P,Q中的一點到達C點時,兩點同時停止運動.

(1)求AB所在直線的函數(shù)表達式.
(2)如圖2,當點Q在AB上運動時,求△CPQ的面積S關于t的函數(shù)表達式及S的最大值.
(3)在P,Q的運動過程中,若線段PQ的垂直平分線經(jīng)過四邊形OABC的頂點,求相應的t值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知兩條射線OM∥CN,動線段AB的兩個端點A、B分別在射線OM、CN上,且∠C=∠OAB=108°,F(xiàn)在線段CB上,OB平分∠AOF,OE平分∠COF.

(1)請在圖中找出與∠AOC相等的角,并說明理由;

(2)若平行移動AB,那么∠OBC與∠OFC的度數(shù)比是否隨著AB位置的變化而發(fā)生變化?若變化,找出變化規(guī)律;若不變,求出這個比值;

(3)在平行移動AB的過程中,是否存在某種情況,使∠OEC=2∠OBA?若存在,請求出∠OBA度數(shù);若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】解決問題時需要思考:是否解決過與其類似的問題.小明從問題1解題思路中獲得啟發(fā)從而解決了問題2.
(1)問題1:如圖①,在正方形ABCD中,E、F是BC、CD上兩點,∠EAF=45°.
求證:∠AEF=∠AEB.
小明給出的思路為:延長EB到H,滿足BH=DF,連接AH.請完善小明的證明過程.
(2)問題2:如圖②,在等腰直角△ABC中,∠ACB=90°,AC=BC=4,D為AB中點,E、F是AC、BC邊上兩點,∠EDF=45°.

①求點D到EF的距離.
②若AE=a,則SDEF=(用含字母a的代數(shù)式表示).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知ABCD.

(1)判斷∠FAB與∠C的大小關系,請說明理由;

(2)若∠C35°,AB是∠FAD的平分線.

①求∠FAD的度數(shù);

②若∠ADB110°,求∠BDE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了解學生課外閱讀的喜好,某校從八年級隨機抽取部分學生進行問卷調(diào)查,調(diào)查要求每人只選取一種喜歡的書籍,如果沒有喜歡的書籍,則作其它類統(tǒng)計。圖(1)與圖(2)是整理數(shù)據(jù)后繪制的兩幅不完整的統(tǒng)計圖。以下結論不正確的是( )

A. 由這兩個統(tǒng)計圖可知喜歡科普常識的學生有90人.

B. 若該年級共有1200名學生,則由這兩個統(tǒng)計圖可估計喜愛科普常識的學生約有360個.

C. 由這兩個統(tǒng)計圖不能確定喜歡小說的人數(shù).

D. 在扇形統(tǒng)計圖中,漫畫所在扇形的圓心角為72°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,AD⊥BC,垂足為D,AE∥BC,DE∥AB. 證明:
(1)AE=DC;
(2)四邊形ADCE為矩形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我們知道:同弧或等弧所對的圓周角相等.也就是,如圖(1),⊙O中, 所對的圓周角∠ACB=∠ADB=∠AEB.
(1)已知:如圖(2),矩形ABCD.
①若AB< BC,在邊AD上求作點P,使∠BPC=90°.(保留作圖痕跡,寫出作法.)
②小明經(jīng)研究發(fā)現(xiàn),當AB、BC的大小關系發(fā)生變化時,①中點P的個數(shù)也會發(fā)生變化,請你就點P的個數(shù),探討AB與BC之間的數(shù)量關系.(直接寫出結論)
創(chuàng)新
(2)小明經(jīng)進一步研究發(fā)現(xiàn):命題“若四邊形的一組對邊相等和一組對角相等,則這個四邊形是平行四邊形.”是一個假命題,并在平行四邊形的基礎上利用“同弧或等弧所對的圓周角相等.”作出了一個反例圖形.請你利用下面如圖(3)所給的□ABCD作出該反例圖形.(不寫作法,保留作圖痕跡)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】若將一幅三角板按如圖所示的方式放置,則下列結論中不正確的是( )

A. 1=∠3 B. 如果∠230°,則有ACDE

C. 如果∠230°,則有BCAD D. 如果∠230°,必有∠4=∠C

查看答案和解析>>

同步練習冊答案