【題目】如圖,在△ABC中,AB=AC,AD⊥BC,垂足為D,AE∥BC,DE∥AB. 證明:
(1)AE=DC;
(2)四邊形ADCE為矩形.

【答案】
(1)證明:在△ABC中,∵AB=AC,AD⊥BC,

∴BD=DC,

∵AE∥BC,DE∥AB,

∴四邊形ABDE為平行四邊形,

∴BD=AE,

∵BD=DC,

∴AE=DC.


(2)證明:∵AE∥BC,AE=DC,

∴四邊形ADCE為平行四邊形.

又∵AD⊥BC,

∴∠ADC=90°,

∴四邊形ADCE為矩形.


【解析】(1)等腰三角形的三線(xiàn)合一,可證明BD=CD,因?yàn)锳E∥BC,DE∥AB,所以四邊形ABDE為平行四邊形,所以BD=AE,從而得出結(jié)論.(2)先證明四邊形ADCE為平行四邊形,再證明有一個(gè)角是直角即可.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線(xiàn) 與直線(xiàn) 相交于點(diǎn)P(1,b)

(1)求b,m的值
(2)垂直于x軸的直線(xiàn) 與直線(xiàn) , 分別相交于C,D,若線(xiàn)段CD長(zhǎng)為2,求a的值

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABC 三邊的中線(xiàn) AD,BE,CF 相交于點(diǎn) G,若 SABC=15,則圖中陰影部分面積是______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校學(xué)生在電腦培訓(xùn)前后各參加了一次水平相同的考試,考分都以同一標(biāo)準(zhǔn)劃分成“不合格”、“合格”、“優(yōu)秀”三個(gè)等級(jí).為了了解電腦培訓(xùn)的效果,隨機(jī)抽取其中32名學(xué)生兩次考試考分等級(jí)制成統(tǒng)計(jì)圖(如圖),試回答下列問(wèn)題:
(1)這32名學(xué)生經(jīng)過(guò)培訓(xùn),考分等級(jí)“不合格”的百分比由下降到;
(2)估計(jì)該校640名學(xué)生,培訓(xùn)后考分等級(jí)為“合格”與“優(yōu)秀”的學(xué)生共有多少名.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,某同學(xué)在大樓AD的觀(guān)光電梯中的E點(diǎn)測(cè)得大樓BC樓底C點(diǎn)的俯角為45°,此時(shí)該同學(xué)距地面高度AE為20米,電梯再上升5米到達(dá)D點(diǎn),此時(shí)測(cè)得大樓BC樓頂B點(diǎn)的仰角為37°,求大樓的高度BC.
(參考數(shù)據(jù):sin37°≈0.60,cos37°≈0.80,tan37°≈0.75).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩車(chē)從A地將一批物品勻速運(yùn)往B地,已知甲出發(fā)0.5h后乙開(kāi)始出發(fā),如圖,線(xiàn)段OP、MN分別表示甲、乙兩車(chē)離A地的距離S(km)與時(shí)間t(h)的關(guān)系,請(qǐng)結(jié)合圖中的信息解決如下問(wèn)題:
(1)計(jì)算甲、乙兩車(chē)的速度及a的值;
(2)乙車(chē)到達(dá)B地后以原速立即返回. ①在圖中畫(huà)出乙車(chē)在返回過(guò)程中離A地的距離S(km)與時(shí)間t(h)的函數(shù)圖象;
②請(qǐng)問(wèn)甲車(chē)在離B地多遠(yuǎn)處與返程中的乙車(chē)相遇?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,△ABC的頂點(diǎn)A的坐標(biāo)為(0,﹣1),頂點(diǎn)Bx軸的負(fù)半軸上,頂點(diǎn)Cy軸的正半軸上,且∠ABC=90°,ACB=30°,線(xiàn)段OC的垂直平分線(xiàn)分別交OC,BC于點(diǎn)D,E.

(1)點(diǎn)C的坐標(biāo);

(2)點(diǎn)P為線(xiàn)段ED的延長(zhǎng)線(xiàn)上的一點(diǎn),連接PC,PA,設(shè)點(diǎn)P的橫坐標(biāo)為t,ACP的面積為S,求St的函數(shù)關(guān)系式;

(3)(2)的條件下,點(diǎn)F為線(xiàn)段BC的延長(zhǎng)線(xiàn)上一點(diǎn),連接OF,若OF=CP,求∠OFP的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖①,在三角形ABC中,點(diǎn)E,F(xiàn)分別為線(xiàn)段AB,AC上任意兩點(diǎn),EG交BC于點(diǎn)G,交AC的延長(zhǎng)線(xiàn)于點(diǎn)H,∠1+∠AFE=180°.

(1)證明:BC∥EF;

(2)如圖②,若∠2=∠3,∠BEG=∠EDF,證明:DF平分∠AFE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知△ABC為直角三角形,∠C=90°,邊BC是⊙0的切線(xiàn),切點(diǎn)為D,AB經(jīng)過(guò)圓心O并與圓相交于點(diǎn)E,連接AD.

(1)求證:AD平分∠BAC;
(2)若AC=8,tan∠DAC= ,求⊙O的半徑.

查看答案和解析>>

同步練習(xí)冊(cè)答案