【題目】如圖,直線y=﹣x+1與反比例函數(shù)y=的圖象相交于點A、B,過點A作AC⊥x軸,垂足為點C(﹣2,0),連接AC、BC.
(1)求反比例函數(shù)的解析式;
(2)求S△ABC;
(3)利用函數(shù)圖象直接寫出關(guān)于x的不等式﹣x+1<的解集.
【答案】解:(1)y=﹣;(2)7.5;(3)﹣2<x<0或x>3.
【解析】
(1)根據(jù)C點的橫坐標(biāo)和點A在直線上,求出點A的坐標(biāo),代入反比例函數(shù)的解析式即可。
(2)根據(jù)一次函數(shù)和反比例函數(shù)的解析式求出B點坐標(biāo),求出直線AB與x軸的交點D的坐標(biāo),再根據(jù)三角形ABC的面積=根據(jù)三角形ADC的面積+根據(jù)三角形DBC的面積即可
(3)結(jié)合A、B兩點坐標(biāo),觀察圖象即可得出。
(1)∵AC⊥x軸,點C(﹣2,0),∴A點橫坐標(biāo)為-2,
當(dāng)x=-2時,y=2+1=3,∴A(-2,3)
∵A(-2,3)反比例函數(shù)y=的圖象,∴k=-6,
∴y=﹣;
(2)解方程組:,
解得:或
∴B(3,-2)
設(shè)直線AB交x軸于點D,對于y=-x+1,
當(dāng)y=0時,x=1
∴D(1,0)∴CD=3
∴△ABC的面積=△ADC的面積+△DBC的面積=×3×3+×3×2=7.5.
(3)由圖得,當(dāng)-2<x<0或x>3時,反比例函數(shù)值大于一次函數(shù)值;
∴關(guān)于x的不等式﹣x+1<的解集為:-2<x<0或x>3
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一座拱橋的輪廓是拋物線型,拱高6,在長度為8的兩支柱和之間,還安裝著三根支柱,相鄰兩支柱間的距離為5.
(1)建立如圖所示的直角坐標(biāo)系,求拱橋拋物線的函數(shù)表達(dá)式;
(2)求支柱的長度.
(3)拱橋下面擬鋪設(shè)行車道,要保證高3的汽車能夠通過(車頂與拱橋的距離不小于0.3),行車道最寬可以鋪設(shè)多少米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校為了了解九年級學(xué)生寒假的閱讀情況,隨機抽取了該年級的部分學(xué)生進(jìn)行調(diào)查,統(tǒng)計了他們每人的閱讀本數(shù),設(shè)每名學(xué)生的閱讀本數(shù)為n,并按以下規(guī)定分為四檔:當(dāng)n<3時,為“偏少”;當(dāng)3≤n<5時,為“一般”;當(dāng)5≤n<8時,為“良好”;當(dāng)n≥8時,為“優(yōu)秀”.將調(diào)查結(jié)果統(tǒng)計后繪制成不完整的統(tǒng)計圖表:
閱讀本數(shù)n(本) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
人數(shù)(名) | 1 | 2 | 6 | 7 | 12 | x | 7 | y | 1 |
請根據(jù)以上信息回答下列問題:
(1)分別求出統(tǒng)計表中的x,y的值;
(2)求扇形統(tǒng)計圖中“優(yōu)秀”類所在扇形的圓心角的度數(shù);
(3)如果隨機去掉一個數(shù)據(jù),求眾數(shù)發(fā)生變化的概率,并指出眾數(shù)變化時,去掉的是哪個數(shù)據(jù).
[Failed to download image : http://192.168.0.10:8086/QBM/2019/5/21/2208296361205760/2209339150721024/STEM/fd85c35161634f71b20809e4321f104b.png]
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平行四邊形ABCD放置在平面直角坐標(biāo)系xOy中,已知A(-2,0),B(2,0),D(0,3),反比例函數(shù)y=(x>0)的圖象經(jīng)過點C.
(1)求此反比例函數(shù)的解析式;
(2)問將平行四邊形ABCD向上平移多少個單位,能使點B落在雙曲線上?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O的半徑是2,弦AB=,點C為是優(yōu)弧AB上一個動點,BD⊥BC交直線AC于點D,則△ABD的面積的最大值為___________ .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】撫順某中學(xué)為了解八年級學(xué)生的體能狀況,從八年級學(xué)生中隨機抽取部分學(xué)生進(jìn)行體能測試,測試結(jié)果分為A,B,C,D四個等級.請根據(jù)兩幅統(tǒng)計圖中的信息回答下列問題:
(1)本次抽樣調(diào)查共抽取了多少名學(xué)生?
(2)求測試結(jié)果為C等級的學(xué)生數(shù),并補全條形圖;
(3)若該中學(xué)八年級共有700名學(xué)生,請你估計該中學(xué)八年級學(xué)生中體能測試結(jié)果為D等級的學(xué)生有多少名?
(4)若從體能為A等級的2名男生2名女生中隨機的抽取2名學(xué)生,做為該校培養(yǎng)運動員的重點對象,請用列表法或畫樹狀圖的方法求所抽取的兩人恰好都是男生的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】重慶某中學(xué)組織七、八、九年級學(xué)生參加“直轄20年,點贊新重慶”作文比賽,該校將收到的參賽作文進(jìn)行分年級統(tǒng)計,繪制了如圖1和如圖2兩幅不完整的統(tǒng)計圖,根據(jù)圖中提供的信息完成以下問題.
(1)扇形統(tǒng)計圖中九年級參賽作文篇數(shù)對應(yīng)的圓心角是 度,并補全條形統(tǒng)計圖;
(2)經(jīng)過評審,全校有4篇作文榮獲特等獎,其中有一篇來自七年級,學(xué)校準(zhǔn)備從特等獎作文中任選兩篇刊登在校刊上,請利用畫樹狀圖或列表的方法求出七年級特等獎作文被選登在校刊上的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線y=﹣x2+bx+c經(jīng)過點A、B、C,已知A(﹣1,0),C(0,3).
(1)求拋物線的解析式;
(2)如圖1,P為線段BC上一點,過點P作y軸平行線,交拋物線于點D,當(dāng)△BDC的面積最大時,求點P的坐標(biāo);
(3)如圖2,拋物線頂點為E,EF⊥x軸于F點,M(m,0)是x軸上一動點,N是線段EF上一點,若∠MNC=90°,請指出實數(shù)m的變化范圍,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下列材料,完成任務(wù):
自相似圖形
定義:若某個圖形可分割為若干個都與它相似的圖形,則稱這個圖形是自相似圖形.例如:正方形ABCD中,點E、F、G、H分別是AB、BC、CD、DA邊的中點,連接EG,HF交于點O,易知分割成的四個四邊形AEOH、EBFO、OFCG、HOGD均為正方形,且與原正方形相似,故正方形是自相似圖形.
任務(wù):
(1)圖1中正方形ABCD分割成的四個小正方形中,每個正方形與原正方形的相似比為 ;
(2)如圖2,已知△ABC中,∠ACB=90°,AC=4,BC=3,小明發(fā)現(xiàn)△ABC也是“自相似圖形”,他的思路是:過點C作CD⊥AB于點D,則CD將△ABC分割成2個與它自己相似的小直角三角形.已知△ACD∽△ABC,則△ACD與△ABC的相似比為 ;
(3)現(xiàn)有一個矩形ABCD是自相似圖形,其中長AD=a,寬AB=b(a>b).
請從下列A、B兩題中任選一條作答:我選擇 題.
A:①如圖3﹣1,若將矩形ABCD縱向分割成兩個全等矩形,且與原矩形都相似,則a= (用含b的式子表示);
②如圖3﹣2若將矩形ABCD縱向分割成n個全等矩形,且與原矩形都相似,則a= (用含n,b的式子表示);
B:①如圖4﹣1,若將矩形ABCD先縱向分割出2個全等矩形,再將剩余的部分橫向分割成3個全等矩形,且分割得到的矩形與原矩形都相似,則a= (用含b的式子表示);
②如圖4﹣2,若將矩形ABCD先縱向分割出m個全等矩形,再將剩余的部分橫向分割成n個全等矩形,且分割得到的矩形與原矩形都相似,則a= (用含m,n,b的式子表示).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com