【題目】如圖,二次函數(shù)的圖像與軸交于和兩點,交軸于點,點、是二次函數(shù)圖像上的一對對稱點,一次函數(shù)的圖像經(jīng)過、;
(1)請直接寫出點的坐標;
(2)求二次函數(shù)的解析式;
(3)根據(jù)圖像直接寫出使一次函數(shù)值大于二次函數(shù)值的的取值范圍;
【答案】(1);(2);(3)或.
【解析】
(1)利用二次函數(shù)對稱性得出其對稱軸,進而得出D點坐標;(2)由于二次函數(shù),把C(0,3)代入求出a的值即可得到拋物線解析式;(3)觀察函數(shù)圖象,寫出一次函數(shù)圖象在拋物線上方所對應(yīng)的自變量的范圍即可.
解:(1)由二次函數(shù)的圖像可知,拋物線的頂點坐標為,對稱軸是.
又∵二次函數(shù)的圖象與軸交于,
∴.
(2)把代入到解析式,得,代入整理可得,
所以二次函數(shù)的解析式為.
(3)由,解得 ,∴點B(1,0)
如圖,一次函數(shù)值大于二次函數(shù)值的的取值范圍是或.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1是一扇旋轉(zhuǎn)門,它由一個圓柱形空間的三片旋轉(zhuǎn)翼組成,三片旋轉(zhuǎn)翼將圓柱形空間等分為三個扇形空間,AB與CD處為出入口,在旋轉(zhuǎn)過程中,當某一片旋轉(zhuǎn)翼的一端與點B重合時,另兩片中的一片旋轉(zhuǎn)翼的一端與點D重合;繼續(xù)旋轉(zhuǎn),當某一片旋轉(zhuǎn)翼的一端與點A重合時,另兩片中的一片旋轉(zhuǎn)翼的一端則與點C重合。圖2是從頂部俯視的示意圖,點O為圓心,若圓O的直徑為3米,且旋轉(zhuǎn)門出入口的寬度相等,則該旋轉(zhuǎn)門出入口的寬度為_____米.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線與直線交于A,B兩點,交x軸與D,C兩點,連接AC,已知A(0,3),C(3,0).(1)拋物線的解析式__;(2)設(shè)E為線段AC上一點(不含端點),連接DE,一動點M從點D出發(fā),沿線段DE以每秒一個單位速度運動到E點,再沿線段EA以每秒個單位的速度運動到A后停止.若使點M在整個運動中用時最少,則點E的坐標__.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AD是Rt△ABC斜邊BC上的中線,過A,D兩點的⊙O交AC于E,弦EF∥BC.
(1)求證:AD=EF;
(2)若O在AC邊上,且⊙O與BC邊相切,當EF=2時,求的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)y=ax2﹣4x+c的圖象經(jīng)過坐標原點,與x軸交于點A(﹣4,0).
(1)求二次函數(shù)的解析式;
(2)在拋物線上存在點P,滿足S△AOP=8,請直接寫出點P的坐標.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠B=90°,AC=10cm,BC=6cm,現(xiàn)有兩點P、Q的分別從點A和點C同時出發(fā),沿邊AB,CB向終點B移動.已知點P,Q的速度分別為2cm/s,1cm/s,且當其中一點到達終點時,另一點也隨之停止移動,設(shè)P,Q兩點移動時間為xs.問是否存在這樣的x,使得四邊形APQC的面積等于16cm2?若存在,請求出此時x的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對于三個數(shù)、、,用表示這三個數(shù)的中位數(shù),用表示這三個數(shù)中最大數(shù),例如:,,.
解決問題:
(1)填空:如果,則的取值范圍為 ;
(2)如果,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=8cm,BC=16cm,點P從點D出發(fā)向點A運動,運動到點A停止,同時,點Q從點B出發(fā)向點C運動,運動到點C即停止,點P、Q的速度都是1cm/s.連接PQ、AQ、CP.設(shè)點P、Q運動的時間為ts.
(1)當t為何值時,四邊形ABQP是矩形;
(2)當t為何值時,四邊形AQCP是菱形;
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com