【題目】如圖,點(diǎn)B、C分別在函數(shù)的圖像上,ABx軸,ACy軸,已知點(diǎn)A的坐標(biāo)為(2,m)(),延長(zhǎng)OA交反比例函數(shù)的圖像交于點(diǎn)P,

(1)當(dāng)點(diǎn)P橫坐標(biāo)為3,求m的值;

(2)連接CO,當(dāng)AC=OA時(shí),求m的值;

(3)連接BP、CP,的值是否隨m的變化而變化?若變化,說(shuō)明理由;若不變,求出的值.

【答案】(1);(2) ;(3) 不變,比值為1,理由見(jiàn)解析

【解析】

1)先求出P的坐標(biāo)為,再根據(jù)即可求出m的值;

2)通過(guò)A點(diǎn)的坐標(biāo)先求出C點(diǎn)的坐標(biāo),再根據(jù)即可求出m的值;

3)通過(guò)反比例函數(shù)k的幾何意義及三角形面積的求法進(jìn)行求解即可得解.

1)延長(zhǎng)CAx軸于點(diǎn)E,過(guò)點(diǎn)P軸于點(diǎn)F,則,如下圖所示

∵點(diǎn)P在函數(shù)的圖像上,且橫坐標(biāo)為3

∴點(diǎn)P的坐標(biāo)為

,即

;

2)∵,可求得

,

解得:

3的值不變;

如下圖,延長(zhǎng)BA軸于點(diǎn)M,延長(zhǎng)CA軸于點(diǎn)N,連接OB

易得

∵四邊形AMON為矩形

=1.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtABC中,∠ACB90°,將ABC繞頂點(diǎn)C逆時(shí)針旋轉(zhuǎn)得到ABC,MBC的中點(diǎn),PAB的中點(diǎn),連接PM,若BC2,∠BAC30°,則線段PM的最大值是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】太陽(yáng)能光伏發(fā)電因其清潔、安全、便利、高效等特點(diǎn),已成為世界各國(guó)普遍關(guān)注和重點(diǎn)發(fā)展的新興產(chǎn)業(yè),如圖是太陽(yáng)能電池板支撐架的截面圖,其中的粗線表示支撐角鋼,太陽(yáng)能電池板與支撐角鋼AB的長(zhǎng)度相同,均為300cm,AB的傾斜角為,BE=CA=50cm,支撐角鋼CD,EF與底座地基臺(tái)面接觸點(diǎn)分別為D,F(xiàn),CD垂直于地面,于點(diǎn)E.兩個(gè)底座地基高度相同即點(diǎn)D,F(xiàn)到地面的垂直距離相同,均為30cm,點(diǎn)A到地面的垂直距離為50cm,求支撐角鋼CD和EF的長(zhǎng)度各是多少cm結(jié)果保留根號(hào)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖, 的直徑,于點(diǎn),點(diǎn)上一點(diǎn)連結(jié),

)在下添輔助線的前提下直接寫(xiě)出圖中與相等的角,不用證明

)求證當(dāng)時(shí), 相似

)若,的度數(shù)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】微商小明投資銷售一種進(jìn)價(jià)為每條元的圍巾.銷售過(guò)程中發(fā)現(xiàn),每月銷售量(件)與銷售單價(jià)(元)之間的關(guān)系可近似的看作一次函數(shù) 銷售過(guò)程中銷售單價(jià)不低于成本價(jià),而每條的利潤(rùn)不高于成本價(jià)的

)設(shè)小明每月獲得利潤(rùn)為(元),求每月獲得利潤(rùn)(元)與銷售單價(jià)(元)之間的函數(shù)關(guān)系式,并確定自變量的取值范圍

)當(dāng)銷售單價(jià)定為多少元時(shí)每月可獲得最大利潤(rùn)?每月的最大利潤(rùn)是多少?

)如果小明想要每月獲得的利潤(rùn)不低于那么小明每月的成本最少需要多少元?(成本進(jìn)價(jià)銷售量)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形, , ,動(dòng)點(diǎn)在邊,連結(jié),過(guò)點(diǎn)的垂線交直線于點(diǎn).設(shè)

)求關(guān)于的函數(shù)關(guān)系式

)當(dāng)時(shí),的長(zhǎng)

)若直線與線段延長(zhǎng)線交于點(diǎn)當(dāng)時(shí),的長(zhǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了響應(yīng)綠水青山就是金山銀山的環(huán)保建設(shè),提高企業(yè)的治污能力某大型企業(yè)準(zhǔn)備購(gòu)買A,B兩種型號(hào)的污水處理設(shè)備共8臺(tái),若購(gòu)買A型設(shè)備2臺(tái),B型設(shè)備3臺(tái)需34萬(wàn)元;購(gòu)買A型設(shè)備4臺(tái),B型設(shè)備2臺(tái)需44萬(wàn)元.

1)求AB兩種型號(hào)的污水處理設(shè)備的單價(jià)各是多少?

2)已知一臺(tái)A型設(shè)備一個(gè)月可處理污水220噸,B型設(shè)備一個(gè)月可處理污水190噸,若該企業(yè)每月處理的污水不低于1700噸,請(qǐng)你為該企業(yè)設(shè)計(jì)一種最省錢的購(gòu)買方案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平行四邊形ABCD中,點(diǎn)A1,A2,A3,A4和C1,C2,C3,C4分別是ABCD的五等分點(diǎn),點(diǎn)B1,B2和D1,D2分別是BC和DA的三等分點(diǎn),已知四邊形A4B2C4D2的面積為2,則平行四邊形ABCD的面積為( )

A. 4 B. C. D. 30

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】推理填空

已知,如圖,,平分,平分,求證:

證明:

__________(兩直線平行,同旁內(nèi)角互補(bǔ))

__________(兩直線平行,同旁內(nèi)角互補(bǔ))

_____________=________________

又∵平分

____________(角平分線定義)

又∵平分

____________(角平分線定義)

_____________=________________

___________(兩直線平行,內(nèi)錯(cuò)角相等)

_____________=________________(等量代換)

(同位角相等,兩直線平行)

查看答案和解析>>

同步練習(xí)冊(cè)答案