【題目】如圖,拋物線y=﹣x2+4x﹣3與x軸交于點A、B,把拋物線在x軸及其上方的部分記作C1,將C1向右平移得到C2,C2與x軸交于B、D兩點.若直線y=kx﹣k與C1、C2共有3個不同的交點,則k的最大值是( 。
A.B.2﹣6C.6+4D.6﹣4
【答案】C
【解析】
本題首先要確定直線可能所處的位置(如下圖所示),一種情況是直線m與拋物線相切,另一種情況是直線n過B點,進而求出k的值.
解:
由拋物線從C1:y=﹣x2+4x﹣3平移得到拋物線C2,則容易得到其的方程為:
y=﹣(x﹣4)2+1,(3≤x≤5),
如圖所示直線與圖象有3個交點的情況如圖所示,即在兩條直線m、n之間部分作直線都會和拋物線圖形有3個交點:
(1)當直線m與拋物線C2相切時,可得:kx﹣k=y=﹣(x﹣4)2+1
相切時:△=0,即k2﹣12k+4=0,解得:k=6±4,取最大值為6+4;
(2)當直線n過B點時,把B點坐標(3,0)代入直線y=kx﹣k,解得:k=0,
直線k>0;
綜上,0<k≤6+4,
故選:C.
科目:初中數學 來源: 題型:
【題目】如圖,把拋物線y=x2平移得到拋物線m,拋物線m經過點A(﹣6,0)和原點O(0,0),它的頂點為P,它的對稱軸與拋物線y=x2交于點Q,則圖中陰影部分的面積為 ▲ .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知AB是⊙O的直徑,C是⊙O上的點,連接AC、CB,過O作EO∥CB并延長EO到F,使EO=FO,連接AF并延長,AF與CB的延長線交于D.求證:AE2=FGFD.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,四邊形ABCD中,AC平分∠DAB,AC2=ABAD,∠ADC=90°,E為AB的中點.
(1)求證:△ADC∽△ACB;
(2)CE與AD有怎樣的位置關系?試說明理由;
(3)若AD=4,AB=6,求的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,△ABC內接于⊙O,∠CBG=∠A,CD為直徑,OC與AB相交于點E,過點E作EF⊥BC,垂足為F,連接BD.
(1)求證:BG與⊙O相切;
(2)若,求的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,將矩形ABCD沿DE折疊,點A恰好落在BC上的點F處,點G、H分別在AD、AB上,且FG⊥DH,若tan∠ADE=,則的值為( 。
A.B.C.D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某書店積極響應政府“改革創(chuàng)新,奮發(fā)有為”的號召,舉辦“讀書節(jié)“系列活動.活動中故事類圖書的標價是典籍類圖書標價的1.5倍,若顧客用540元購買圖書,能單獨購買故事類圖書的數量恰好比單獨購買典籍類圖書的數量少10本.
(1)求活動中典籍類圖書的標價;
(2)該店經理為鼓勵廣大讀者購書,免費為購買故事類的讀者贈送圖1所示的精致矩形包書紙.在圖1的包書紙示意圖中,虛線是折痕,陰影是裁剪掉的部分,四角均為大小相同的正方形,正方形的邊長為折疊進去的寬度.已知該包書紙的面積為875cm2(含陰影部分),且正好可以包好圖2中的《中國故事》這本書,該書的長為21cm,寬為15cm,厚為1cm,請直接寫出該包書紙包這本書時折疊進去的寬度.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com