【題目】BD、CE分別是ABC的邊ACAB上的高,PBD的延長線上,且BP=AC,點QCE上,CQ=AB,

求證:(1AP=AQ

2APAQ

【答案】詳見解析

【解析】

1)由于BDAC,CEAB,可得∠ABD=ACE,又有對應(yīng)邊的關(guān)系,進而得出ABP≌△QCA;

2)在(1)的基礎(chǔ)上,證明∠PAQ=90°即可.

解:(1)∵BDAC,CEAB(已知),

∴∠BEC=BDC=90°,∠ABD+BAC=90°,∠ACE+BAC=90°

∴∠ABD=ACE

ABPQCA

∴△ABP≌△QCASAS

AP=AQ

2)由(1)可得∠CAQ=P

BDAC(已知),即∠P+CAP=90°

∴∠CAQ+CAP=90°,

即∠QAP=90°,

APAQ

考點: 全等三角形的判定與性質(zhì).

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】某商場銷售AB兩種商品,售出1A種商品和4B種商品所得利潤為600元;售出3A種商品和5B種商品所得利潤為1100元.

1)求每件A種商品和每件B種商品售出后所得利潤分別為多少元;

2)由于需求量大,A、B兩種商品很快售完,該商場決定再一次購進A、B兩種商品共35件,如果將這35件商品全部售完后所得利潤高于4000元,那么該商場至少需購進多少件A種商品?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】1)問題發(fā)現(xiàn)

如圖,直線ABCD,EABAD之間的一點,連接BE,CE,可以發(fā)現(xiàn)B+∠CBEC

請把下面的證明過程補充完整:

證明:過點EEFAB,

ABDC(已知),EFAB(輔助線的作法),

EFDC   

∴∠CCEF.(   

EFAB,∴∠BBEF(同理),

∴∠B+∠C   (等量代換)

B+∠CBEC

2)拓展探究

如果點E運動到圖所示的位置,其他條件不變,求證:B+∠C360°﹣∠BEC

3)解決問題

如圖,ABDCC120°,AEC80°,則A   .(之間寫出結(jié)論,不用寫計算過程)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某開發(fā)商要建一批住房,經(jīng)調(diào)查了解,若甲、乙兩隊分別單獨完成,則乙隊完成的天數(shù)是甲隊的1.5倍;若甲、乙兩隊合作,則需120天完成.

(1)甲、乙兩隊單獨完成各需多少天?

(2)施工過程中,開發(fā)商派兩名工程師全程監(jiān)督,需支付每人每天食宿費150元.已知乙隊單獨施工,開發(fā)商每天需支付施工費為10000元.現(xiàn)從甲、乙兩隊中選一隊單獨施工,若要使開發(fā)商選甲隊支付的總費用不超過選乙隊的,則甲隊每天的施工費最多為多少元?(總費用=施工費+工程師食宿費)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知ABC中,a、b、c分別是A、B、C的對邊,下列條件不能判斷ABC是直角三角形的是( )

A.AB=C

B.ABC=3:4:5

C.(b+c)(b﹣c)=a2

D.a(chǎn)=7,b=24,c=25

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,∠BOC9°,點AOB上,且OA1,按下列要求畫圖:以A為圓心,1為半徑向右畫弧交OC于點A1,得第1條線段AA1;再以A1為圓心,1為半徑向右畫弧交OB于點A2,得第2條線段A1A2;再以A2為圓心,1為半徑向右畫弧交OC于點A3,得第3條線段A2A3;再以A3為圓心,1為半徑向右畫弧交OB于點A4,得第4條線段A3A4;…這樣畫下去,直到得第n條線段,之后就不能再畫出符合要求的線段了,則n的值是( 。

A. 6B. 7C. 8D. 9

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在四邊形ABCD中,∠ABC90°,ADBC,ABBCEAB的中點,CEBD

1)求證:△ABD≌△BCE

2)求證:AC是線段ED的垂直平分線.

3)△DBC是等腰三角形嗎?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】學習有理數(shù)的乘法后,老師給同學們這樣一道題目:計算:49×-5),看誰算的又快又對,有兩位同學的解法如下:

聰聰;原式=-×5=--249;

明明:原式=49+×-5=49×-5+×-5=-249,

1)對于以上兩種解法,你認為誰的解法較好?

2)上面的解法對你有何啟發(fā),你認為還有更好的方法嗎?如果有,請把它寫出來;

3)用你認為最合適的方法計算:39×-8).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】潼南綠色無公害蔬菜基地有甲、乙兩種植戶,他們種植了A、B兩類蔬菜,兩種植戶種植的兩類蔬菜的種植面積與總收入如下表:

種植戶

種植A類蔬菜面積

(單位:畝)

種植B類蔬菜面積

(單位:畝)

總收入

(單位:元)

3

1

12500

2

3

16500

說明:不同種植戶種植的同類蔬菜每畝平均收入相等.

(1)求A、B兩類蔬菜每畝平均收入各是多少元?

(2)某種植戶準備租20畝地用來種植A、B兩類蔬菜,為了使總收入不低于63000元,且種植A類蔬菜的面積多于種植B類蔬菜的面積(兩類蔬菜的種植面積均為整數(shù)),求該種植戶所有租地方案.

查看答案和解析>>

同步練習冊答案