【題目】如圖:平行四邊形ABCD中,EAB中點(diǎn),AFFD,連E、FACG,則AGGC_____

【答案】15

【解析】

延長(zhǎng)FECB的延長(zhǎng)線于M,利用已知條件證明AFE≌△BME,可得到AF=BM,再有平行線四邊形的性質(zhì)可證明AFG∽△CMG,利用相似三角形的性質(zhì)即可求出AGGC的值.

延長(zhǎng)FECB的延長(zhǎng)線于M

∵四邊形ABCD是平行四邊形,

∴∠EAF=∠MBE,∠AFE=∠BME,

又∵AEBE

∴△AFE≌△BMEAAS),

AFBM,

AFFD13,

AFAD14

AFMC15,

ADBC

∴△AFG∽△CMG,

AFMCAGGC15,

故答案為:15

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義:如果一個(gè)三位數(shù),它的各個(gè)數(shù)位上的數(shù)字都不為零,且滿足百位上的數(shù)字與個(gè)位上的數(shù)字的平均數(shù)等于十位上的數(shù)字,則稱這個(gè)三位數(shù)為開(kāi)合數(shù).設(shè)為一個(gè)開(kāi)合數(shù),將的百位數(shù)字與個(gè)位數(shù)字交換位置后得到的新數(shù)再與相加的和記為.例如:852是“開(kāi)合數(shù)”,則

1)已知開(kāi)合數(shù),且為整數(shù)),求的值;

2)三位數(shù)是一個(gè)開(kāi)合數(shù),若百位數(shù)字小于個(gè)位數(shù)字,是一個(gè)整數(shù),且能被個(gè)位數(shù)字與百位數(shù)字的差整除,請(qǐng)求滿足條件的所有值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某班為參加學(xué)校的大課間活動(dòng)比賽,準(zhǔn)備購(gòu)進(jìn)一批跳繩,已知2型跳繩和1型跳繩共需56元,1型跳繩和2型跳繩共需82元.

1)求一根型跳繩和一根型跳繩的售價(jià)各是多少元?

2)學(xué)校準(zhǔn)備購(gòu)進(jìn)這兩種型號(hào)的跳繩共50根,并且型跳繩的數(shù)量不多于型跳繩數(shù)量的3倍,請(qǐng)?jiān)O(shè)計(jì)出最省錢的購(gòu)買方案,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系xOy中,半徑為1的⊙Ox軸正半軸和y軸正半軸分別交于AB兩點(diǎn),直線lykx+2k0)與x軸和y軸分別交于PM兩點(diǎn).

1)當(dāng)直線與⊙O相切時(shí),求出點(diǎn)M的坐標(biāo)和點(diǎn)P的坐標(biāo);

2)如圖2,當(dāng)點(diǎn)P在線段OA上時(shí),直線1與⊙O交于EF兩點(diǎn)(點(diǎn)E在點(diǎn)F的上方)過(guò)點(diǎn)FFCx軸,與⊙O交于另一點(diǎn)C,連結(jié)ECy軸于點(diǎn)D

①如圖3,若點(diǎn)P與點(diǎn)A重合時(shí),求OD的長(zhǎng)并寫出解答過(guò)程;

②如圖2,若點(diǎn)P與點(diǎn)A不重合時(shí),OD的長(zhǎng)是否發(fā)生變化,若不發(fā)生變化,請(qǐng)求出OD的長(zhǎng)并寫出解答過(guò)程;若發(fā)生變化,請(qǐng)說(shuō)明理由.

3)如圖4,在(2)的基礎(chǔ)上,連結(jié)BF,將線段BF繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)90°BQ,若點(diǎn)QCE的延長(zhǎng)線時(shí),請(qǐng)用等式直接表示線段FC,FQ之間的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】學(xué)校植物園沿路護(hù)欄的紋飾部分設(shè)計(jì)成若干個(gè)全等菱形圖案,每增加一個(gè)菱形圖案,紋飾長(zhǎng)度就增加dcm,如圖所示,已知每個(gè)菱形圖案的邊長(zhǎng)為10cm,其中一個(gè)內(nèi)角為60°.

(1)求一個(gè)菱形圖案水平方向的對(duì)角線長(zhǎng);

(2)d26,紋飾的長(zhǎng)度L能否是6010cm?若能,求出菱形個(gè)數(shù);若不能,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖①所示,已知正方形ABCD和正方形AEFG,連接DG,BE

1)發(fā)現(xiàn):當(dāng)正方形AEFG繞點(diǎn)A旋轉(zhuǎn),如圖②所示.

①線段DGBE之間的數(shù)量關(guān)系是   ;

②直線DG與直線BE之間的位置關(guān)系是   ;

2)探究:如圖③所示,若四邊形ABCD與四邊形AEFG都為矩形,且AD2AB,AG2AE時(shí),上述結(jié)論是否成立,并說(shuō)明理由.

3)應(yīng)用:在(2)的情況下,連接BG、DE,若AE1,AB2,求BG2+DE2的值(直接寫出結(jié)果).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】將兩塊直角三角板如圖1放置,等腰直角三角板的直角頂點(diǎn)是點(diǎn),,直角板的直角頂點(diǎn)上,且,.三角板固定不動(dòng),將三角板繞點(diǎn)逆時(shí)針旋轉(zhuǎn),旋轉(zhuǎn)角為

1)當(dāng)_______時(shí),;

2)當(dāng)時(shí),三角板繞點(diǎn)逆時(shí)針旋轉(zhuǎn)至如圖2位置,設(shè)交于點(diǎn),于點(diǎn),求四邊形的面積.

3)如圖3,設(shè),四邊形的面積為,求關(guān)于的表達(dá)式(不用寫的取值范圍).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】兩會(huì)期間,記者隨機(jī)抽取參會(huì)的部分代表,對(duì)他們某天發(fā)言的次數(shù)進(jìn)行了統(tǒng)計(jì),其結(jié)果如表,并繪制了如圖所示的兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)結(jié)合圖中相關(guān)數(shù)據(jù)回答下列問(wèn)題:

發(fā)言次數(shù)n

A

0≤n3

B

3≤n6

C

6≤n9

D

9≤n12

E

12≤n15

F

15≤n18

1)求得樣本容量為   ,并補(bǔ)全直方圖;

2)如果會(huì)議期間組織1700名代表參會(huì),請(qǐng)估計(jì)在這一天里發(fā)言次數(shù)不少于12次的人數(shù);

3)已知A組發(fā)表提議的代表中恰有1為女士,E組發(fā)表提議的代表中只有2位男士,現(xiàn)從A組與E組中分別抽一位代表寫報(bào)告,請(qǐng)用列表法或畫樹(shù)狀圖的方法,求所抽的兩位代表恰好都是男士的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案