不論m取任何實數(shù),y關(guān)于x的二次函數(shù)y=x2+2mx+m2+2m-1的圖象的頂點都在一條直線上,求這條直線的函數(shù)解析式.
【答案】分析:將二次函數(shù)y=x2+2mx+m2+2m-1變形求出頂點坐標,再消去m,得到頂點橫縱坐標的關(guān)系,即得直線的函數(shù)解析式.
解答:解:二次函數(shù)可以變形為y=(x+m)2+2m-1,
拋物線的頂點坐標為(-m,2m-1).
,
消去m,得y=-2x-1.
所以這條直線的函數(shù)解析式為y=-2x-1.
點評:本題考查了二次函數(shù)的頂點坐標,需注意消去變量求得直線的函數(shù)解析式.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

當拋物線的解析式中含有字母系數(shù)時,隨著系數(shù)中字母取值的不同,拋物線的頂點坐標也將發(fā)生變化.例如:由拋物線y=x2-2mx+m2+2m-1…(1)
得:y=(x-m)2+2m-1…(2)
x0=m  (3)
y0=2m-1  (4)

∴拋物線的頂點坐標為(m,2m-1),設(shè)頂點為P(x0,y0),則:
當m的值變化時,頂點橫、縱坐標x0,y0的值也隨之變化,將(3)代入(4)
得:y0=2x0-1.…(5)
可見,不論m取任何實數(shù)時,拋物線的頂點坐標都滿足y=2x-1.
根據(jù)閱讀材料提供的方法,確定拋物線y=x2-2mx+2m2-4m+3的頂點縱坐標y與橫坐標x之間的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知拋物線y=-x2+2kx-k2+k+1(k是常數(shù))
(1)通過配方,寫出拋物線的對稱軸和頂點坐標;
(2)求證:不論k取任何實數(shù),拋物線的頂點都在某一次函數(shù)的圖象上.并指出此一次函數(shù)的解析式;
(3)設(shè)此拋物線與y軸的交點為A(0,1),其頂點為B.試問:在x軸上是否存在一點P,使△精英家教網(wǎng)ABP的周長最?若存在,請求出點P的坐標;若不存在,請簡述理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:閱讀理解

閱讀材料:當拋物線的解析式中含有字母系數(shù)時,隨著系數(shù)中字母取值的不同,拋物線的頂點坐標也將發(fā)生變化.例如:由拋物線y=x2-2mx+m2+2m-1…(1)
得:y=(x-m)2+2m-1…(2)
∴拋物線的頂點坐標為(m,2m-1),設(shè)頂點為P(x0,y0),則:
x0=m        …(3)
y0=2m-1  …(4)

當m的值變化時,頂點橫、縱坐標x0,y0的值也隨之變化,將(3)代入(4)
得:y0=2x0-1.…(5)
可見,不論m取任何實數(shù)時,拋物線的頂點坐標都滿足y=2x-1.
解答問題:
①在上述過程中,由(1)到(2)所用的數(shù)學方法是
 
,其中運用的公式是
 
.由(3)、(4)得到(5)所用的數(shù)學方法是
 

②根據(jù)閱讀材料提供的方法,確定拋物線y=x2-2mx+2m2-4m+3的頂點縱坐標y與橫坐標x之間的函數(shù)關(guān)系式.
③是否存在實數(shù)m,使拋物線y=x2-2mx+2m2-4m+3與x軸兩交點A(x1,0)、B(x2,0)之間的距離為AB=4,若存在,求出m的值;若不存在,說明理由(提示:|x1-x2|2=(x1+x22-4x1x2).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:閱讀理解

閱讀材料,解答問題.
當拋物線的表達式中含有字母系數(shù)時,隨著系數(shù)中的字母取值的不同,拋物線的頂點坐標出將發(fā)生變化.
例如:由拋物線y=x2-2mx+m2+2m-1,…①
有y=(x-m)2+2m-1,…②
∴拋物線的頂點坐標為(m,2m-1)
即x=m …③
y=2m-1 …④
當m的值變化時,x、y的值也隨之變化,因而y值也隨x值的變化而變化
將③代入④,得y=2x-1…⑤
可見,不論m取任何實數(shù),拋物線頂點的縱坐標y和橫坐標x都滿足關(guān)系式y(tǒng)=2x-1.
解答問題:
(1)在上述過程中,由①到②所用的數(shù)學方法是
 
,由③、④到⑤所用到的數(shù)學方法是
 

(2)根據(jù)閱讀材料提供的方法,確定拋物線y=x2-2mx+2m2-3m+1頂點的縱坐標y與橫坐標x之間的表達式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,直線y=-
12
x+1與x軸、y軸分別交于點A、B,以AB為直角邊在第一象限內(nèi)作等腰Rt△ABC,∠BAC=90°,若點P(1,a)為坐標系中的一個動點.
(1)求Rt△ABC的面積;
(2)說明不論a取任何實數(shù),△BOP的面積都是一個常數(shù);
(3)要使得△ABC和△ABP的面積相等,求實數(shù)a的值.

查看答案和解析>>

同步練習冊答案