精英家教網 > 初中數學 > 題目詳情
如圖,已知△ABC是等邊三角形,OE∥AB,OF∥AC,你認為△OEF是什么三角形?請說明理由.
分析:根據△ABC是等邊三角形,得出∠B與∠C的度數,再根據OE∥AB,OF∥AC,得出∠OEF與∠OFE的度數,從而得出△OEF是等邊三角形.
解答:解:∵△ABC是等邊三角形,
∴∠B=∠C=60°,
∵OE∥AB,
∴∠B=∠OEF=60°,
∵OF∥AC,
∴∠C=∠OFE=60°,
∴△OEF是等邊三角形.
點評:此題考查了等邊三角形的判定與性質,根據兩直線平行,同位角相等,得出∠OEF與∠OFE的度數是解題的關鍵.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

如圖,已知△ABC是邊長為4的正三角形,AB在x軸上,點C在第一象限,AC與y軸交于點D,點A精英家教網的坐標為(-1,0).
(1)寫出B,C,D三點的坐標;
(2)若拋物線y=ax2+bx+c經過B,C,D三點,求此拋物線的解析式.

查看答案和解析>>

科目:初中數學 來源: 題型:

精英家教網如圖,已知△ABC是等邊三角形,AB交⊙O于點D,DE⊥AC于點E.
(1)求證:DE為⊙O的切線.
(2)已知DE=3,求:弧BD的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

精英家教網如圖,已知△ABC是等邊三角形,E是AC延長線上一點,選擇一點D,使得△CDE是等邊三角形,如果M是線段AD的中點,N是線段BE的中點,
求證:△CMN是等邊三角形.

查看答案和解析>>

科目:初中數學 來源: 題型:

(2012•襄城區(qū)模擬)如圖,已知△ABC是等邊三角形,D、E分別在邊BC、AC上,且CD=CE,連接DE并延長至點F,使EF=AE,連接AF、BE和CF.
(1)求證:△BCE≌△FDC;
(2)判斷四邊形ABDF是怎樣的四邊形,并說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

(2013•奉賢區(qū)二模)如圖,已知△ABC是等邊三角形,點D是BC延長線上的一個動點,以AD為邊作等邊△ADE,過點E作BC的平行線,分別交AB,AC的延長線于點F,G,聯結BE.
(1)求證:△AEB≌△ADC;
(2)如果BC=CD,判斷四邊形BCGE的形狀,并說明理由.

查看答案和解析>>

同步練習冊答案