【題目】在中,∠ABC=90°,∠BAC=30°,將繞點A順時針旋轉一定的角度α得到,點B、C的對應點分別是E、D.
(1)如圖1,當點E恰好在AC上時,求∠CDE的度數(shù);
(2)如圖2,若α=60°時,點F是邊AC中點,求證:DF=BE;
(3)如圖3,點B、C的坐標分別是(0,0),(0,2),點Q是線段AC上的一個動點,點M是線段AO上的一個動點,是否存在這樣的點Q、M使得為等腰三角形且為直角三角形?若存在,請直接寫出滿足條件的點M的坐標;若不存在,請說明理由.
【答案】(1)15°;(2)證明見解析;(3)M(,0)或(,0)
【解析】
(1)由旋轉的性質(zhì)得出,,利用等腰三角形的性質(zhì)求出,進而得解;
(2)通過證明與是等邊三角形,,進而得證;
(3)分兩種情況考慮:①當時,要使得△CQM為等腰三角形,則,②當時,要使得△CQM為等腰三角形,則,分別求解即可.
解:(1)∵∠ABC=90°,∠BAC=30°,
∵將繞點A順時針旋轉一定的角度α得到,且點E恰好在AC上,
∴,,,
∴,
∴;
(2)由題意知,,,,
∴是等邊三角形,
∴,
∵點F是的邊AC的中點,
∴,
∵∠BAC=30°,
∴,
∴是等邊三角形,
∴,
在與中,,
∴,
∴,
∴;
(3)分兩種情況考慮:
∵,,
∴,由勾股定理知,,
設點,
①當時,要使得△CQM為等腰三角形,則,
∴,,
∴由勾股定理知,,即,
解得,(負值舍去),,
∴,
∴,
解得,,
∴;
②當時,要使得△CQM為等腰三角形,則,
∴,由勾股定理知,,,
∴,
解得,,
∴,
綜上所述,存在,點或.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,過點A(﹣,0)的兩條直線分別交y軸于B(0,m)、C(0,n)兩點,且m、n(m>n)滿足方程組的解.
(1)求證:AC⊥AB;
(2)若點D在直線AC上,且DB=DC,求點D的坐標;
(3)在(2)的條件下,在直線BD上尋找點P,使以A、B、P三點為頂點的三角形是等腰三角形,請直接寫出P點的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某學校計劃租用6輛客車送一批師生參加一年一度的哈爾濱冰雕節(jié),感受冰雕藝術的魅力.現(xiàn)有甲、乙兩種客車,它們的載客量和租金如下表.設租用甲種客車x輛,租車總費用為y元.
甲種客車 | 乙種客車 | |
載客量(人/輛) | 45 | 30 |
租金(元/輛) | 280 | 200 |
(1)求出y(元)與x(輛)之間的函數(shù)關系式,指出自變量的取值范圍;
(2)若該校共有240名師生前往參加,領隊老師從學校預支租車費用1650元,試問預支的租車費用是否可以結余?若有結余,最多可結余多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】A、B兩輛汽車同時從相距330千米的甲、乙兩地相向而行,s(千米)表示汽車與甲地的距離,t(分)表示汽車行駛的時間,如圖,L1,L2分別表示兩輛汽車的s與t的關系.
(1)L1表示哪輛汽車到甲地的距離與行駛時間的關系?
(2)汽車B的速度是多少?
(3)求L1,L2分別表示的兩輛汽車的s與t的關系式.
(4)2小時后,兩車相距多少千米?
(5)行駛多長時間后,A、B兩車相遇?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,PA、PB為⊙O的切線,M、N是PA、AB的中點,連接MN交⊙O點C,連接PC交⊙O于D,連接ND交PB于Q,求證:MNQP為菱形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,一個四邊形紙片ABCD,∠B=∠D=90°,把紙片按如圖所示折疊,使點B落在AD邊上的B'點,AE是折痕。
(1)試判斷B'E與DC的位置關系并說明理由。
(2)如果∠C=130°,求∠AEB的度數(shù)。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,觀察數(shù)軸,請回答:
(1)點C與點D的距離為______ ,點B與點D的距離為______ ;
(2)點B與點E的距離為______ ,點A與點C的距離為______ ;
發(fā)現(xiàn):在數(shù)軸上,如果點M與點N分別表示數(shù)m,n,則他們之間的距離可表示為 ______(用m,n表示)
(3)利用發(fā)現(xiàn)的結論解決下列問題: 數(shù)軸上表示x的點P與B之間的距離是1,則 x 的值是______ .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,,的平分線與BC的延長線交于點E,與DC交于點F,且點F為邊DC的中點,,垂足為G,若,則AE的邊長為
A. B. C. 4 D. 8
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com