【題目】曲阜限制“三小車輛”出行后,為方便市民出行,準(zhǔn)備為、、、四個村建一個公交車站.
(1)請問:公交站建在何處才能使它到4個村的距離之和最小,請?jiān)趫D一中找出點(diǎn);
(2)請問:公交站建在何處才能使它到道路、、的距離相等,請?jiān)趫D二中找出點(diǎn)并加以說明.
【答案】(1)見解析;(2)見解析
【解析】
(1)公交站P是AC與BD的交點(diǎn),要證這點(diǎn)到四點(diǎn)的距離最小,可以證明除這點(diǎn)以外的點(diǎn)到四點(diǎn)的距離大于這點(diǎn)到四點(diǎn)的距離;
(2)公交站是∠ABC與∠DCB角平分線的交點(diǎn),由角平分線性質(zhì)定理可知,角平分線上的點(diǎn)到這個角兩邊的距離相等.
解:(1)應(yīng)建在AC,BD連線的交點(diǎn)P處,如圖一,
理由:如下圖,若不建在P處,建在P1處,由三角形兩邊之和大于第三邊可知,
,
即P1A+P1C+P1B+P1D>AC+BD,
故結(jié)論成立應(yīng)建在P處.
即P1A+P1C+P1B+P1D>AC+BD.
故結(jié)論成立應(yīng)建在P處.
(2)應(yīng)建在∠ABC與∠DCB角平分線的交點(diǎn)處,如圖二,
理由:由角平分線性質(zhì)定理可知,角平分線上的點(diǎn)到這個角兩邊的距離相等.
所以點(diǎn)P道路、、的距離相等.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在△ABC中,AB=AC,∠BAC=90°,D為AC邊上一動點(diǎn),且不與點(diǎn)A點(diǎn)C重合,連接BD并延長,在BD延長線上取一點(diǎn)E,使AE=AB,連接CE.
(1)若∠AED=20°,則∠DEC= 度;
(2)若∠AED=a,試探索∠AED與∠AEC有怎樣的數(shù)量關(guān)系?并證明你的猜想;
(3)如圖2,過點(diǎn)A作AF⊥BE于點(diǎn)F,AF的延長線與EC的延長線交于點(diǎn)H,求證:EH2+CH2=2AE2.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列命題的逆命題成立的是( 。
A.全等三角形的對應(yīng)角相等
B.若三角形的三邊滿足,則該三角形是直角三角形
C.對頂角相等
D.同位角互補(bǔ),兩直線平行
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等腰△ABC中,AC=BC,D,E分別為AB,BC上一點(diǎn),∠CDE=∠A.
(1)如圖1,若BC=BD,∠ACB=90°,則∠DEC度數(shù)為_________°;
(2)如圖2,若BC=BD,求證:CD=DE;
(3)如圖3,過點(diǎn)C作CH⊥DE,垂足為H,若CD=BD,EH=1,求DE-BE的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:直線y=ax+b與直線y=bx+a互為“友好直線”.如:直線y=2x+1與直線y=x+2互為“友好直線”.
(1)點(diǎn)M(m,2)在直線y=-x+4的“友好直線”上,則m=________;
(2)直線y=4x+3上的一點(diǎn)M(m,n)又是它的“友好直線”上的點(diǎn),求點(diǎn)M的坐標(biāo);
(3)對于直線y=ax+b上的任意一點(diǎn)M(m,n),都有點(diǎn)N(2m,m-2n)在它的“友好直線”上,求直線y=ax+b的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC的周長是20,OB和OC分別平分∠ABC和∠ACB,OD⊥BC于點(diǎn)D,且OD=3,則△ABC的面積是( 。
A. 20 B. 25 C. 30 D. 35
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知中,、分別為、上的點(diǎn),且,交于,連并延長交于.
(1)當(dāng)時(shí),求的值;
(2)當(dāng)時(shí),求證:;
(3)當(dāng)________時(shí),為中點(diǎn).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,已知直線y=-2x+4與x軸、y軸分別交于點(diǎn)A、C,以O(shè)A、OC為邊在第一象限內(nèi)作長方形OABC.
(1)求點(diǎn)A、C的坐標(biāo);
(2)將△ABC對折,使得點(diǎn)A的與點(diǎn)C重合,折痕交AB于點(diǎn)D,求直線CD的解析式(圖②);
(3)在坐標(biāo)平面內(nèi),是否存在點(diǎn)P(除點(diǎn)B外),使得△APC與△ABC全等?若存在,請直接寫出所有符合條件的點(diǎn)P的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】[問題情境]
已知矩形的面積為一定值1,當(dāng)該矩形的一組鄰邊分別為多少時(shí),它的周長最?最小值是多少?
[數(shù)學(xué)模型]
設(shè)該矩形的一邊長為x,周長為L,則L與x的函數(shù)表達(dá)式為 .
[探索研究]
小彬借鑒以前研究函數(shù)的經(jīng)驗(yàn),先探索函數(shù)的圖象性質(zhì).
(1)結(jié)合問題情境,函數(shù)的自變量x的取值范圍是 ,
如表是y與x的幾組對應(yīng)值.
x | … | 1 | 2 | 3 | m | … | |||
y | … | 4 | 3 | 2 | 2 | 2 | 3 | 4 | … |
①直接寫出m的值;
②畫出該函數(shù)圖象,結(jié)合圖象,得出當(dāng)x= 時(shí),y有最小值,y的最小值為 .
[解決問題]
(2)直接寫出“問題情境”中問題的結(jié)論.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com