【題目】有兩張完全重合的矩形紙片,將其中一張繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°后得到矩形AMEF(如圖1),連接BD,MF,若BD=16cm,∠ADB=30°.
(1)試探究線段BD 與線段MF的數(shù)量關(guān)系和位置關(guān)系,并說(shuō)明理由;
(2)把△BCD 與△MEF 剪去,將△ABD繞點(diǎn)A順時(shí)針旋轉(zhuǎn)得△AB1D1,邊AD1交FM 于點(diǎn)K(如圖2),設(shè)旋轉(zhuǎn)角為β(0°<β<90°),當(dāng)△AFK 為等腰三角形時(shí),求β的度數(shù);
(3)若將△AFM沿AB方向平移得到△A2F2M2(如圖3),F2M2與AD交于點(diǎn)P,A2M2與BD交于點(diǎn)N,當(dāng)NP∥AB時(shí),求平移的距離.
【答案】(1)BD=MF,BD⊥MF.理由見(jiàn)解析;(2)β的度數(shù)為60°或15°;(3)平移的距離是(12﹣4)cm.
【解析】
(1)延長(zhǎng)FM交BD于點(diǎn)N,由旋轉(zhuǎn)的性質(zhì)得△BAD≌△MAF,推出BD=MF,∠ADB=∠AFM,進(jìn)而可得∠DNM=90°;
(2)分兩種情形討論:①當(dāng)AK=FK時(shí),②當(dāng)AF=FK時(shí),根據(jù)旋轉(zhuǎn)的性質(zhì)求解即可;
(3)平移的距離是A2A的長(zhǎng)度,在矩形PNA2A中,A2A=PN,求出PN的長(zhǎng)度即可,用△DPN∽△DAB得出對(duì)應(yīng)線段成比例,即可得到A2A的大。
解:(1)結(jié)論:BD=MF,BD⊥MF.
理由:如圖1,延長(zhǎng)FM交BD于點(diǎn)N,
由題意得:△BAD≌△MAF,
∴BD=MF,∠ADB=∠AFM,
又∵∠DMN=∠AMF,
∴∠ADB+∠DMN=∠AFM+∠AMF=90°,
∴∠DNM=90°,
∴BD⊥MF;
(2)如圖2,
①當(dāng)AK=FK時(shí),∠KAF=∠F=30°,
則∠BAB1=180°﹣∠B1AD1﹣∠KAF=180°﹣90°﹣30°=60°,
即β=60°;
②當(dāng)AF=FK時(shí),∠FAK=(180°﹣∠F)=75°,
∴∠BAB1=90°﹣∠FAK=15°,
即β=15°;
綜上所述,β的度數(shù)為60°或15°;
(3)如圖3,
由題意得矩形PNA2A,設(shè)A2A=x,則PN=x,
在Rt△A2M2F2中,∵F2M2=FM=16,∠A2F2M2=∠ADB=30°,
∴A2M2=8,A2F2=8,
∴AF2=8﹣x,
∵∠PAF2=90°,∠PF2A=30°,
∴AP=AF2tan30°=8﹣x,
∴PD=AD﹣AP=8﹣8+x,
∴△DPN∽△DAB,
∴,
∴,
解得x=12﹣4,即A2A=12﹣4,
∴平移的距離是(12﹣4)cm.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)△ABC和△CDE是兩個(gè)等腰直角三角形,如圖1,其中∠ACB=∠DCE=90°,連結(jié)AD、BE,求證:△ACD≌△BCE.
(2)△ABC和△CDE是兩個(gè)含30°的直角三角形,其中∠ACB=∠DCE=90°,∠CAB=∠CDE=30°,CD<AC,△CDE從邊CD與AC重合開(kāi)始繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)一定角度α(0°<α<180°);
①如圖2,DE與BC交于點(diǎn)F,與AB交于點(diǎn)G,連結(jié)AD,若四邊形ADEC為平行四邊形,求的值;
②若AB=10,DE=8,連結(jié)BD、BE,當(dāng)以點(diǎn)B、D、E為頂點(diǎn)的三角形是直角三角形時(shí),求BE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,在中,弦,連接、;
(1)如圖1,求證:;
(2)如圖2,在線段上取點(diǎn),連接并延長(zhǎng)交于點(diǎn),交于點(diǎn),,連接、、,,求的正切值;
(3)如圖3,在(2)的條件下,交于點(diǎn),,,求線段的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是某班甲、乙、丙三位同學(xué)最近5次數(shù)學(xué)成績(jī)及其所在班級(jí)相應(yīng)平均分的折線統(tǒng)計(jì)圖,則下列判斷錯(cuò)誤的是( ).
A. 甲的數(shù)學(xué)成績(jī)高于班級(jí)平均分,且成績(jī)比較穩(wěn)定
B. 乙的數(shù)學(xué)成績(jī)?cè)诎嗉?jí)平均分附近波動(dòng),且比丙好
C. 丙的數(shù)學(xué)成績(jī)低于班級(jí)平均分,但成績(jī)逐次提高
D. 就甲、乙、丙三個(gè)人而言,乙的數(shù)學(xué)成績(jī)最不穩(wěn)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某景點(diǎn)試開(kāi)放期間,團(tuán)隊(duì)收費(fèi)方案如下:不超過(guò)30人時(shí),人均收費(fèi)120元;超過(guò)30人且不超過(guò)m(30<m≤100)人時(shí),每增加1人,人均收費(fèi)降低1元;超過(guò)m人時(shí),人均收費(fèi)都按照m人時(shí)的標(biāo)準(zhǔn).設(shè)景點(diǎn)接待有x名游客的某團(tuán)隊(duì),收取總費(fèi)用為y元.
(1)求y關(guān)于x的函數(shù)表達(dá)式;
(2)景點(diǎn)工作人員發(fā)現(xiàn):當(dāng)接待某團(tuán)隊(duì)人數(shù)超過(guò)一定數(shù)量時(shí),會(huì)出現(xiàn)隨著人數(shù)的增加收取的總費(fèi)用反而減少這一現(xiàn)象.為了讓收取的總費(fèi)用隨著團(tuán)隊(duì)中人數(shù)的增加而增加,求m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知AD是△ABC的中線P是線段AD上的一點(diǎn)(不與點(diǎn)A、D重合),連接PB、PC,E、F、G、H分別是AB、AC、PB、PC的中點(diǎn),AD與EF交于點(diǎn)M;
(1)如圖1,當(dāng)AB=AC時(shí),求證:四邊形EGHF是矩形;
(2)如圖2,當(dāng)點(diǎn)P與點(diǎn)M重合時(shí),在不添加任何輔助線的條件下,寫(xiě)出所有與△BPE面積相等的三角形(不包括△BPE本身).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=AC,以AC為直徑的⊙O交BC于點(diǎn)D,交AB于點(diǎn)E,過(guò)點(diǎn)D作DF⊥AB,垂足為F,連接DE.
(1)求證:直線DF與⊙O相切;
(2)若AE=7,BC=6,求AC的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,PA切⊙O于點(diǎn)A,PC過(guò)點(diǎn)O且與⊙O交于B,C兩點(diǎn),若PA=6cm,PB=2cm,則△PAC的面積是_____cm2.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com