己知:二次函數(shù)y=ax2+bx+6(a≠0)與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè))點(diǎn)

A、點(diǎn)B的橫坐標(biāo)是一元二次方程x2-4x-12=0的兩個(gè)根.

(1)請直接寫出點(diǎn)A、點(diǎn)B的坐標(biāo).

(2)請求出該二次函數(shù)表達(dá)式及對稱軸和頂點(diǎn)坐標(biāo).

(3)如圖1,在二次函數(shù)對稱軸上是否存在點(diǎn)P,使△APC的周長最小,若存在,請求出點(diǎn)P的坐標(biāo);若不存在,請說明理由.

(4)如圖2,連接AC、BC,點(diǎn)Q是線段0B上一個(gè)動點(diǎn)(點(diǎn)Q不與點(diǎn)0、B重合).過點(diǎn)Q作QD∥AC交BC于點(diǎn)D,設(shè)Q點(diǎn)坐標(biāo)(m,0),當(dāng)△CDQ面積S最大時(shí),求m的值.


(1)A(-2,0),B(6,0);(2) y=-x2+2x+6,拋物線對稱軸為x=2,頂點(diǎn)坐標(biāo)為(2,8);(3) P(2,4);(4)2.

【解析】

試題分析:(1)解一元二次方程x2-4x-12=0可求A、B兩點(diǎn)坐標(biāo);

(2)將A、B兩點(diǎn)坐標(biāo)代入二次函數(shù)y=ax2+bx+6,可求二次函數(shù)解析式,配方為頂點(diǎn)式,可求對稱軸及頂點(diǎn)坐標(biāo);

(3)作點(diǎn)C關(guān)于拋物線對稱軸的對稱點(diǎn)C′,連接AC′,交拋物線對稱軸于P點(diǎn),連接CP,P點(diǎn)即為所求;

(4)由DQ∥AC得△BDQ∽△BCA,利用相似比表示△BDQ的面積,利用三角形面積公式表示△ACQ的面積,根據(jù)S△CDQ=S△ABC-S△BDQ-S△ACQ,運(yùn)用二次函數(shù)的性質(zhì)求面積最大時(shí),m的值.

試題解析:(1)A(-2,0),B(6,0);

(3)如圖,作點(diǎn)C關(guān)于拋物線對稱軸的對稱點(diǎn)C′,連接AC′,交拋物線對稱軸于P點(diǎn),連接CP,

∵C(0,6),

∴C′(4,6),

設(shè)直線AC′解析式為y=ax+b,則

解得,

∴y=x+2,當(dāng)x=2時(shí),y=4,

即P(2,4);

考點(diǎn):二次函數(shù)綜合題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:


如圖,已知直線a∥b∥c,且a與b之間的距離為3,且b與c之間的距離為1,點(diǎn)A到直線a的距離為2,點(diǎn)B到直線c的距離為3,AB=.試在直線a上找一點(diǎn)M,在直線c上找一點(diǎn)N,滿足MN⊥a且AM+MN+NB的長度和最短,則此時(shí)AM+NB=【  】

A.12      B.10       C.8      D.6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖(1),Rt△ABC和Rt△EFD中,AC與DE重合,AB=EF=1,∠BAC=∠DEF=90º,∠ ACB=∠EDF=30º,固定△ABC,將△DEF繞點(diǎn)A順時(shí)針旋轉(zhuǎn),當(dāng)DF邊與AB邊重合時(shí),旋轉(zhuǎn)中止,F(xiàn)不考慮旋轉(zhuǎn)開始和結(jié)束時(shí)重合的情況,設(shè)DE,DF(或它們的延長線)分別交BC(或它的延長線) 于G,H點(diǎn),如圖(2)

(1)問:始終與△AGC相似的三角形是     

(2)設(shè)CG=x,BG=y,求y關(guān)于x的函數(shù)關(guān)系式;

(3)問:當(dāng)x為何值時(shí),△HGA是等腰三角形。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


在△ABC中,P是AB上的動點(diǎn)(P異于A、B),過點(diǎn)P的直線截△ABC,使截得的三角形與△ABC相似,我們不妨稱這種直線為過點(diǎn)P的△ABC的相似線,簡記為P(lx)(x為自然數(shù)).

(1)如圖①,∠A=90°,∠B=∠C,當(dāng)BP=2PA時(shí),P(l1)、P(l2)都是過點(diǎn)P的△ABC的相似線(其中l(wèi)1⊥BC,l2∥AC),此外,還有       條;

(2)如圖②,∠C=90°,∠B=30°,當(dāng)=          時(shí),P(lx)截得的三角形面積為△ABC面積的

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖,A、B兩點(diǎn)的坐標(biāo)分別是(8,0)、(0,6),點(diǎn)P由點(diǎn)B出發(fā)沿BA方向向點(diǎn)A作勻速直線運(yùn)動,速度為每秒3個(gè)單位長度,點(diǎn)Q由A出發(fā)沿AO(O為坐標(biāo)原點(diǎn))方向向點(diǎn)O作勻速直線運(yùn)動,速度為每秒2個(gè)單位長度,連接PQ,若設(shè)運(yùn)動時(shí)間為t(0<t<)秒.解答如下問題:

(1)當(dāng)t為何值時(shí),PQ∥BO?

(2)設(shè)△AQP的面積為S,

①求S與t之間的函數(shù)關(guān)系式,并求出S的最大值;

若我們規(guī)定:點(diǎn)P、Q的坐標(biāo)分別為(x1,y1),(x2,y2),則新坐標(biāo)(x2﹣x1,y2﹣y1)稱為“向量PQ”的坐標(biāo).當(dāng)S取最大值時(shí),求“向量PQ”的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖,矩形ABCD中, BC=2,點(diǎn)P是線段BC上一點(diǎn),連接PA,將線段PA繞點(diǎn)P逆時(shí)針旋轉(zhuǎn)90°得到線段PE,平移線段PE得到CF,連接EF。問:四邊形PCFE的面積是否有最大值?若有,請求出面積的最大值及此時(shí)BP長;若沒有,請說明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖,在邊長為4的正方形ABCD中,動點(diǎn)E以每秒1個(gè)單位長度的速度從點(diǎn)A開始沿邊AB向點(diǎn)B運(yùn)動,動點(diǎn)F以每秒2個(gè)單位長度的速度從點(diǎn)B開始沿折線BC﹣CD向點(diǎn)D運(yùn)動,動點(diǎn)E比動點(diǎn)F先出發(fā)1秒,其中一個(gè)動點(diǎn)到達(dá)終點(diǎn)時(shí),另一個(gè)動點(diǎn)也隨之停止運(yùn)動,設(shè)點(diǎn)F的運(yùn)動時(shí)間為t秒.

(1)點(diǎn)F在邊BC上.

①如圖1,連接DE,AF,若DE⊥AF,求t的值;

②如圖2,連結(jié)EF,DF,當(dāng)t為何值時(shí),△EBF與△DCF相似?

(2)如圖3,若點(diǎn)G是邊AD的中點(diǎn),BG,EF相交于點(diǎn)O,試探究:是否存在在某一時(shí)刻t,使得?若存在,求出t的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


 如圖,Rt△ABC中,∠ACB=90°,AC=BC=4cm,CD=1cm,若動點(diǎn)E以1cm/s的速度從A點(diǎn)出發(fā),沿著A→B→A的方向運(yùn)動,至A點(diǎn)結(jié)束,設(shè)E點(diǎn)的運(yùn)動時(shí)間為t秒,連接DE,當(dāng)△BDE是直角三角形時(shí),t的值為         秒。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


 如圖,在△ABC中,AB=AC,D是BA延長線上的一點(diǎn),點(diǎn)E是AC的中點(diǎn).

(1)實(shí)踐與操作:利用尺規(guī)按下列要求作圖,并在圖中標(biāo)明相應(yīng)字母(保留作圖痕跡,不寫作法).

①作∠DAC的平分線AM. ②連接BE并延長交AM于點(diǎn)F.

(2)猜想與證明:試猜想AF與BC有怎樣的位置關(guān)系和數(shù)量關(guān)系,并說明理由.

查看答案和解析>>

同步練習(xí)冊答案