如圖,矩形ABCD中, BC=2,點P是線段BC上一點,連接PA,將線段PA繞點P逆時針旋轉(zhuǎn)90°得到線段PE,平移線段PE得到CF,連接EF。問:四邊形PCFE的面積是否有最大值?若有,請求出面積的最大值及此時BP長;若沒有,請說明理由。


解:有。

依題意,得四邊形PCFE是平行四邊形。

設(shè)BP=x,則PC=2﹣x ,平行四邊形PEFC的面積為S,

【考點】四邊形綜合題,旋轉(zhuǎn)和平移問題,矩形的性質(zhì),全等三角形的判定和性質(zhì),平行四邊形的判定和性質(zhì),由實際問題列函數(shù)關(guān)系式,二次函數(shù)的最值。


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:


 把直線沿y軸方向平移m個單位后,與直線的交點在第二象限,則m的取值范圍是【    】

A.      B.       C.       D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖,在矩形ABCD中,AB=3,BC=4.動點P從點A出發(fā)沿AC向終點C運動,同時動點Q從點B出發(fā)沿BA向點A運動,到達A點后立刻以原來的速度沿AB返回.點P、Q運動速度均為每秒1個單位長度,當(dāng)點P到達點C時停止運動,點Q也同時停止.連接PQ,設(shè)運動時間為tt >0)秒.

(1)求線段AC的長度;

(2)當(dāng)點Q從點B向點A運動時(未到達A點),求△APQ的面積S關(guān)于t的函數(shù)關(guān)系式,并寫出t的取值范圍;

(3)伴隨著P、Q兩點的運動,線段PQ的垂直平分線為l

①當(dāng)l經(jīng)過點A時,射線QPAD于點E,求AE的長;

②當(dāng)l經(jīng)過點B時,求t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖①,在矩形紙片ABCD中,AB=+1,AD=

(1)如圖②,將矩形紙片向上方翻折,使點D恰好落在AB邊上的D′處,壓平折痕交CD于點E,則折痕AE的長為    ;

(2)如圖③,再將四邊形BCED′沿D′E向左翻折,壓平后得四邊形B′C′ED′,B′C′交AE于點F,則四邊形B′FED′的面積為    ;

(3)如圖④,將圖②中的△AED′繞點E順時針旋轉(zhuǎn)α角,得△A′ED″,使得EA′恰好經(jīng)過頂點B,求弧D′D″的長.(結(jié)果保留π)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


己知:二次函數(shù)y=ax2+bx+6(a≠0)與x軸交于A、B兩點(點A在點B的左側(cè))點

A、點B的橫坐標(biāo)是一元二次方程x2-4x-12=0的兩個根.

(1)請直接寫出點A、點B的坐標(biāo).

(2)請求出該二次函數(shù)表達式及對稱軸和頂點坐標(biāo).

(3)如圖1,在二次函數(shù)對稱軸上是否存在點P,使△APC的周長最小,若存在,請求出點P的坐標(biāo);若不存在,請說明理由.

(4)如圖2,連接AC、BC,點Q是線段0B上一個動點(點Q不與點0、B重合).過點Q作QD∥AC交BC于點D,設(shè)Q點坐標(biāo)(m,0),當(dāng)△CDQ面積S最大時,求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖1,在等邊△ABC中,點D是邊AC的中點,點P是線段DC上的動點(點P與點C不重合),連結(jié)BP. 將△ABP繞點P按順時針方向旋轉(zhuǎn)α角(0°<α<180°),得到△A1B1P,連結(jié)AA1,射線AA1分別交射線PB、射線B1B于點E、F.

      (1) 如圖1,當(dāng)0°<α<60°時,在α角變化過程中,△BEF與△AEP始終存在       關(guān)系(填“相似”或“全等”),并說明理由;

(2)如圖2,設(shè)∠ABP=β . 當(dāng)60°<α<180°時,在α角變化過程中,是否存在△BEF與△AEP全等?若存在,求出αβ之間的數(shù)量關(guān)系;若不存在,請說明理由;

(3)如圖3,當(dāng)α=60°時,點E、F與點B重合. 已知AB=4,設(shè)DP=x,△A1BB1的面

積為S,求S關(guān)于x的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖所示,直線l:y=3x+3與x軸交于點A,與y軸交于點B.把△AOB沿y軸翻折,點A落到點C,拋物線過點B、C和D(3,0).

(1)求直線BD和拋物線的解析式.

(2)若BD與拋物線的對稱軸交于點M,點N在坐標(biāo)軸上,以點N、B、D為頂點的三角形與△MCD相似,求所有滿足條件的點N的坐標(biāo).

(3)在拋物線上是否存在點P,使SPBD=6?若存在,求出點P的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖,拋物線與x軸交于點A,B,與y軸交于點C。點M為x軸上一動點,在拋物線上是否存在一點N,使以A,C,M,N四點構(gòu)成的四邊形為平行四邊形?若存在,求點N的坐標(biāo);若不存在,請說明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


已知矩形紙片ABCD中,AB=1,BC=,將該紙片疊成一個平面圖形,折痕EF不經(jīng)過A點(E、F是該矩形邊界上的點),折疊后點A落在A′處,給出以下判斷:

①當(dāng)四邊形A,CDF為矩形時,EF=;

②當(dāng)EF=時,四邊形A′CDF為矩形;

③當(dāng)EF=2時,四邊形BA′CD為等腰梯形;

④當(dāng)四邊形BA′CD為等腰梯形時,EF=2。

  其中正確的是         (把所有正確結(jié)論序號都填在橫線上)。

查看答案和解析>>

同步練習(xí)冊答案