【題目】甲、乙兩個(gè)水桶中裝有少量且重量相等的水,先把甲桶的水倒出三分之一給乙桶,再把乙桶的水倒出四分之一給甲桶(假設(shè)不會(huì)溢出),最后甲、乙兩桶中水的重量的大小是(

A. 甲桶中水的重量>乙桶中水的重量 B. 甲桶中水的重量=乙桶中水的重量

C. 甲桶中水的重量<乙桶中水的重量 D. 不能確定,與桶中原有水的重量有關(guān)

【答案】B

【解析】

設(shè)甲、乙兩個(gè)水桶中水的重量是a,甲桶的水倒三分之一給乙桶后乙桶的水=(1+)a,甲桶為(1﹣)a,把乙桶的水倒出四分之一給甲桶時(shí),甲桶有(1﹣)a+(1+)a×,乙桶有水=(1+)a×(1﹣),再比較出其大小即可.

設(shè)甲、乙兩個(gè)水桶中水的重量是a,

∵甲桶的水倒三分之一給乙桶后乙桶的水=(1+)a,甲桶為(1﹣)a,

∴把乙桶的水倒出四分之一給甲桶時(shí),

甲桶有(1﹣)a+(1+)a×=a+a=a;

乙桶有水=(1+)a×(1﹣)=a,

∴甲=乙.

故選:B.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形ABCD中,對(duì)角線(xiàn)BD的垂直平分線(xiàn)MNAD相交于點(diǎn)M,與BD相交于點(diǎn)N,連接BM,DN

1)求證:四邊形BMDN是菱形;

2)若AB=4,AD=8,求MD的長(zhǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(本題10分)某自行車(chē)廠(chǎng)一周計(jì)劃生產(chǎn)700輛自行車(chē),平均每天生產(chǎn)自行車(chē)100輛,由于各種原因,實(shí)際每天生產(chǎn)量與計(jì)劃每天生產(chǎn)量相比有出入。下表是某周的自行車(chē)生產(chǎn)情況(超計(jì)劃生產(chǎn)量為正、不足計(jì)劃生產(chǎn)量為負(fù),單位:輛):

星期

增減

+8

-2

-3

+16

-9

+10

-11

(1)根據(jù)記錄可知前三天共生產(chǎn)自行車(chē) 輛;

(2)產(chǎn)量最多的一天比產(chǎn)量最少的一天生產(chǎn) 輛;

(3)若該廠(chǎng)實(shí)行按生產(chǎn)的自行車(chē)數(shù)量的多少計(jì)工資,即計(jì)件工資制。如果每生產(chǎn)一輛自行車(chē)就可以得人民幣60 元,超額完多成任務(wù),每超一輛可多得 15 元;若不足計(jì)劃數(shù)的,每少生產(chǎn)一輛扣 15 元,那么該廠(chǎng)工人這一周的工資總額是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小明遇到下面的問(wèn)題:求代數(shù)式的最小值并寫(xiě)出取到最小值時(shí)的x值.經(jīng)過(guò)觀(guān)察式子結(jié)構(gòu)特征,小明聯(lián)想到可以用解一元二次方程中的配方法來(lái)解決問(wèn)題,具體分析過(guò)程如下:

,所以,當(dāng)x=1 時(shí),代數(shù)式有最小值是-4.

(1)請(qǐng)你用上面小明思考問(wèn)題的方法解決下面問(wèn)題.

的最小值是_______;②求的最小值

(2)小明受到上面問(wèn)題的啟發(fā),自己設(shè)計(jì)了一個(gè)問(wèn)題,并給出解題過(guò)程及結(jié)論如下:

問(wèn)題:當(dāng)x為實(shí)數(shù)時(shí),求的最小值.

解:,∴原式有最小值是5.

請(qǐng)你判斷小明的結(jié)論是否正確,并簡(jiǎn)要說(shuō)明理由.

判斷:__________,理由:____________________________________________________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABCD中,E是AD上一點(diǎn),延長(zhǎng)CE到點(diǎn)F,使∠FBC=∠DCE.
(1)求證:∠D=∠F;
(2)用直尺和圓規(guī)在A(yíng)D上作出一點(diǎn)P,使△BPC∽△CDP(保留作圖的痕跡,不寫(xiě)作法).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖A在數(shù)軸上所對(duì)應(yīng)的數(shù)為﹣2

1)點(diǎn)B在點(diǎn)A右邊距A點(diǎn)4個(gè)單位長(zhǎng)度,求點(diǎn)B所對(duì)應(yīng)的數(shù);

2)在(1)的條件下,點(diǎn)A以每秒2個(gè)單位長(zhǎng)度沿?cái)?shù)軸向左運(yùn)動(dòng),點(diǎn) B 以每秒2個(gè)單位長(zhǎng)度沿?cái)?shù)軸向右運(yùn)動(dòng),當(dāng)點(diǎn)A運(yùn)動(dòng)到﹣6所在的點(diǎn)處時(shí),求A,B兩點(diǎn)間距離.

3)在2)的條件下,現(xiàn)A點(diǎn)靜止不動(dòng),B點(diǎn)再以每秒2個(gè)單位長(zhǎng)度沿?cái)?shù)軸向左運(yùn)動(dòng)時(shí),經(jīng)過(guò)多長(zhǎng)時(shí)間A,B兩點(diǎn)相距4個(gè)單位長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖拋物線(xiàn)y=ax2+bx+c與x軸交于A(yíng)、B兩點(diǎn),其中B點(diǎn)坐標(biāo)為(4,0),直線(xiàn)DE是拋物線(xiàn)的對(duì)稱(chēng)軸,且與x軸交于點(diǎn)E,CD⊥DE于D,現(xiàn)有下列結(jié)論: ①a<0,②b<0,③b2﹣4ac>0,④AE+CD=4
下列選項(xiàng)中選出的結(jié)論完全正確的是(

A.①②③
B.①②④
C.①③④
D.①②

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】關(guān)于x的不等式組
(1)當(dāng)a=3時(shí),解這個(gè)不等式組;
(2)若不等式組的解集是x<1,求a的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某市霧霾天氣趨于嚴(yán)重,甲商場(chǎng)根據(jù)民眾健康需要,代理銷(xiāo)售每臺(tái)進(jìn)價(jià)分別為600元、560

元的 A、B 兩種型號(hào)的空氣凈化器,如表是近兩周的銷(xiāo)售情況:(進(jìn)價(jià)、售價(jià)均保持不變,利潤(rùn)=銷(xiāo)

售收入進(jìn)貨成本)

銷(xiāo)售時(shí)段

銷(xiāo)售數(shù)量

銷(xiāo)售收入

(元)

A種型號(hào)

(臺(tái))

B種型號(hào)

(臺(tái))

第一周

3

2

3960

第二周

5

4

7120

(1)求 AB 兩種型號(hào)的空氣凈化器的銷(xiāo)售單價(jià);

(2)該商店計(jì)劃一次購(gòu)進(jìn)兩種型號(hào)的空氣凈化器共30臺(tái),其中B型凈化器的進(jìn)貨量不超過(guò)A型的2.設(shè)購(gòu)進(jìn)A型空氣凈化器為x臺(tái),這30臺(tái)空氣凈化器的銷(xiāo)售總利潤(rùn)為y.

①請(qǐng)寫(xiě)出y關(guān)于x的函數(shù)關(guān)系式;

②該商店購(gòu)進(jìn)A型、B型凈化器各多少臺(tái),才能使銷(xiāo)售總利潤(rùn)最大?

查看答案和解析>>

同步練習(xí)冊(cè)答案