【題目】如圖,直角坐標系中,直線與反比例函數(shù)的圖象交于A,B兩點,已知A點的縱坐標是2.
(1)求反比例函數(shù)的解析式.
(2)將直線沿x軸向右平移6個單位后,與反比例函數(shù)在第二象限內(nèi)交于點C.動點P在y軸正半軸上運動,當線段PA與線段PC之差達到最大時,求點P的坐標.
【答案】(1);(2)P(0,6)
【解析】試題分析:(1)先求得點A的坐標,再利用待定系數(shù)法求得反比例函數(shù)的解析式即可;(2)連接AC,根據(jù)三角形兩邊之差小于第三邊知:當A、C、P不共線時,PA-PC<AC;當A、C、P不共線時,PA-PC=AC;因此,當點P在直線AC與y軸的交點時,PA-PC取得最大值.先求得平移后直線的解析式,再求得平移后直線與反比例函數(shù)的圖象的交點坐標,最后求直線AC的解析式,即可求得點P的坐標.
試題解析:
令一次函數(shù)中,則,
解得:,即點A的坐標為(-4,2).
∵點A(-4,2)在反比例函數(shù)的圖象上,
∴k=-4×2=-8,
∴反比例函數(shù)的表達式為.
連接AC,根據(jù)三角形兩邊之差小于第三邊知:當A、C、P不共線時,PA-PC<AC;當A、C、P不共線時,PA-PC=AC;因此,當點P在直線AC與y軸的交點時,PA-PC取得最大值.
設平移后直線于x軸交于點F,則F(6,0)
設平移后的直線解析式為,
將F(6,0)代入得:b=3
∴直線CF解析式:
令3=,解得:,
∴C(-2,4)
∵A、C兩點坐標分別為A(-4,2)、C(-2,4)
∴直線AC的表達式為,
此時,P點坐標為P(0,6).
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,飛機在一定高度上沿水平直線飛行,先在點處測得正前方小島的俯角為,面向小島方向繼續(xù)飛行到達處,發(fā)現(xiàn)小島在其正后方,此時測得小島的俯角為.如果小島高度忽略不計,求飛機飛行的高度(結果保留根號).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,用三種大小不同的5個正方形和一個長方形(陰影部分)拼成長方形ABCD,其中EF=2厘米,最小的正方形的邊長為x厘米.
(1)用含x的代數(shù)式表示FG=________厘米,DG=________厘米.
(2)若長方形ABCD的周長等于52,求x的值
(3)若FG:DG=2:3,求四邊形FGDH(陰影部分)的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一次函數(shù) y=kx+b 的圖像如圖所示,則當kx+b>0 時,x 的取值范圍為___________.
【答案】x>1
【解析】分析:題目要求 kx+b>0,即一次函數(shù)的圖像在x 軸上方時,觀察圖象即可得x的取值范圍.
詳解:
∵kx+b>0,
∴一次函數(shù)的圖像在x 軸上方時,
∴x的取值范圍為:x>1.
故答案為:x>1.
點睛:本題考查了一次函數(shù)與一元一次不等式的關系,主要考查學生的觀察視圖能力.
【題型】填空題
【結束】
16
【題目】菱形ABCD中, ,其周長為32,則菱形面積為____________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】規(guī)定:[x]表示不大于x 的最整數(shù),(x) 表示不小于x的最小整數(shù),[x) 表示最接近x的整數(shù)(x≠n+0.5,n為整數(shù)),例如:[2.3]=2,(2.3)=3,[2.3)=2,則下列說法正確的是__________(寫出所有正確說法).
①當x=1.7時,[x]+(x)+[x)=6;
②當x=-2.1時,[x]+(x)+[x)=-7;
③方程4[x]+3(x)+[x)=11的解為1<x<1.5;
④當-1<x<1時, 函數(shù)y=[x]+(x)+x 的圖像y=4x 的圖像有兩個交點.
【答案】②③
【解析】分析:(1)根據(jù)題目中給的計算方法代入計算后判定即可;(2)根據(jù)題目中給的計算方法代入計算后判定即可;(3)根據(jù)題目中給的計算方法代入計算后判定即可;(4)結合x的取值范圍,分類討論,利用題目中給出的方法計算后判定即可.
詳解:
①當x=1.7時,
[x]+(x)+[x)
=[1.7]+(1.7)+[1.7)=1+2+2=5,故①錯誤;
②當x=﹣2.1時,
[x]+(x)+[x)
=[﹣2.1]+(﹣2.1)+[﹣2.1)
=(﹣3)+(﹣2)+(﹣2)=﹣7,故②正確;
③當1<x<1.5時,
4[x]+3(x)+[x)
=4×1+3×2+1
=4+6+1
=11,故③正確;
④∵﹣1<x<1時,
∴當﹣1<x<﹣0.5時,y=[x]+(x)+x=﹣1+0+x=x﹣1,
當﹣0.5<x<0時,y=[x]+(x)+x=﹣1+0+x=x﹣1,
當x=0時,y=[x]+(x)+x=0+0+0=0,
當0<x<0.5時,y=[x]+(x)+x=0+1+x=x+1,
當0.5<x<1時,y=[x]+(x)+x=0+1+x=x+1,
∵y=4x,則x﹣1=4x時,得x=;x+1=4x時,得x=;當x=0時,y=4x=0,
∴當﹣1<x<1時,函數(shù)y=[x]+(x)+x的圖象與正比例函數(shù)y=4x的圖象有三個交點,故④錯誤,
故答案為:②③.
點睛:本題是閱讀理解題,前三問比較容易判定,根據(jù)題目所給的方法判定即可;第四問較難,結合x的取值范圍分情況討論即可.
【題型】填空題
【結束】
19
【題目】先化簡再求值: ,其中, .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,點D,E分別在AC,BC上,且∠CDE=∠B,將△CDE沿DE折疊,點C恰好落在AB邊上的點F處.若AC=8,AB=10,則CD的長為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,長方形紙片ABCD,點E、F分別在邊AB、CD上,連接EF.將∠BEF對折,點B落在直線EF上的點B′處,得到折痕EC;將∠AEF對折,點A落在直線EF上的點A′處,得到折痕EN.
(1)若∠BEB′=110°,則∠BEC= °,∠AEN= °,∠BEC+∠AEN= °.
(2)若∠BEB′=m°,則(1)中∠BEC+∠AEN的值是否改變?請說明你的理由.
(3)將∠ECF對折,點E剛好落在F處,且折痕與B′C重合,求∠AEN的度數(shù).(提示,長方形的四個角都是90°)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,平面上有四個點A、B、C、D,請用直尺按下列要求作圖:
(1)作直線AB;
(2)作射線BC;
(3)連接AD,并將其反向延長至E,使DE=2AD;
(4)找到一點F,使點F到A、B、C、D四點的距離之和最短.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小明從家出發(fā),沿一條直道跑步,經(jīng)過一段時間原路返回,剛好在第16分鐘回到家中.設小明出發(fā)第t分鐘的速度為v米/分,離家的距離為s米.v與t之間的部分圖象、s與t之間的部分圖象分別如圖1與圖2(圖象沒畫完整,其中圖中的空心圈表示不包含這一點),則當小明離家600米時,所用的時間是( 。┓昼姡
A. 4.5B. 8.25C. 4.5 或8.25D. 4.5 或 8.5
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com