如圖,某隧道口的橫截面是拋物線形,已知路寬AB為6米,最高點離地面的距離OC為5米.以最高點O為坐標原點,拋物線的對稱軸為y軸,1米為數(shù)軸的單位長度,建立平面直角坐標系.求:
(1)以這一部分拋物線為圖象的函數(shù)解析式,并寫出x的取值范圍.
(2)有一輛寬2米,高2.5米的農(nóng)用貨車(貨物最高處與地面AB的距離)能否通過此隧道?
(3)如果該隧道內(nèi)設雙行道,為了安全起見,在隧道正中間設有0.2m寬的隔離帶,則該農(nóng)用貨車還能通過隧道嗎?
(1)設所求函數(shù)的解析式為y=ax2
由題意,得函數(shù)圖象經(jīng)過點B(3,-5),
則-5=9a.
解得a=-
5
9
,
故y=-
5
9
x2.x的取值范圍是-3≤x≤3;

(2)當車寬2米時,此時CN為1米,
對應y=-
5
9

EN長為5-
5
9
=4
1
9
>2.5,
故高2.5米的農(nóng)用貨車能通過此隧道;

(3)根據(jù)題意得:CN=2+0.1=2.1(米),
對應y=-
5
9
,
EN=5-
5
9
=
40
9
米,
40
9
>2.5,
∴該農(nóng)用貨車能通過隧道.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,已知二次函數(shù)y=-
1
2
x2
+bx+c的圖象經(jīng)過A(2,0)、B(0,-6)兩點.
(1)求這個二次函數(shù)的解析式;
(2)設該二次函數(shù)的對稱軸與x軸交于點C,連接BA、BC,求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知二次函數(shù)y=
1
2
x2+bx+c的圖象經(jīng)過點A(c,-2),,求證:這個二次函數(shù)圖象的對稱軸是x=3.
題目中的矩形框部分是一段墨水污染了無法辨認的文字.
(1)根據(jù)已知和結(jié)論中現(xiàn)有的信息,你能否求出題中的二次函數(shù)解析式?若能,請寫出求解過程;若不能,請說明理由;
(2)請你根據(jù)已有的信息,在原題中的矩形框中,填加一個適當?shù)臈l件,把原題補充完整.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知拋物線y=x2+bx+c交x軸于A(1,0)、B(3,0)兩點,交y軸于點C,其頂點為D.
(1)求b、c的值并寫出拋物線的對稱軸;
(2)連接BC,過點O作直線OE⊥BC交拋物線的對稱軸于點E.求證:四邊形ODBE是等腰梯形;
(3)拋物線上是否存在點Q,使得△OBQ的面積等于四邊形ODBE的面積的
1
3
?若存在,求點Q的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

對于任意兩個二次函數(shù):y1=a1x2+b1x+c1,y2=a2x2+b2x+c2,(a1a2≠0),當|a1|=|a2|時,我們稱這兩個二次函數(shù)的圖象為全等拋物線.
現(xiàn)有△ABM,A(-1,0),B(1,0).記過三點的二次函數(shù)拋物線為“C□□□”(“□□□”中填寫相應三個點的字母)
(1)若已知M(0,1),△ABM≌△ABN(0,-1).請通過計算判斷CABM與CABN是否為全等拋物線;
(2)在圖2中,以A、B、M三點為頂點,畫出平行四邊形.
①若已知M(0,n),求拋物線CABM的解析式,并直接寫出所有過平行四邊形中三個頂點且能與CABM全等的拋物線解析式.
②若已知M(m,n),當m,n滿足什么條件時,存在拋物線CABM根據(jù)以上的探究結(jié)果,判斷是否存在過平行四邊形中三個頂點且能與CABM全等的拋物線?若存在,請列出所有滿足條件的拋物線“C□□□”;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖矩形OABC,AB=2OA=2n,分別以OA和OC為x、y軸建立平面直角坐標系,連接OB,沿OB折疊,使點A落在P處.過P作PQ⊥y軸于Q.
(1)求OD:OA的值;
(2)以B為頂點的拋物線:y=ax2+bx+c,經(jīng)過點D,與直線OB相交于E,過E作EF⊥y軸于F,試判斷2•PQ•EF與矩形OABC面積的關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

某種產(chǎn)品的年產(chǎn)量不超過1000噸,該產(chǎn)品的年產(chǎn)量(單位:噸)與費用(單位:萬元)之間函數(shù)的圖象是頂點在原點的拋物線的一部分(如圖1);該產(chǎn)品的年銷售量(單位:噸)與銷售單價(單位:萬元/噸)之間函數(shù)的圖象是線段(如圖2),若生產(chǎn)出的產(chǎn)品都能在當年銷售完,則年產(chǎn)量是多少噸時,所獲毛利潤最大,最大利潤是多少(毛利潤=銷售額-費用).

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在矩形ABCD中,BD=20,AD>AB,設∠ABD=α,已知sinα是方程25x2-35x+12=0的一個實根,點E,F(xiàn)分別是BC,DC上的點,EC+CF=8,設BE=x,△AEF的面積等于y.
(1)求出y與x之間的函數(shù)關(guān)系式;
(2)當E,F(xiàn)兩點在什么位置時,y有最小值并求出這個最小值.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

用長為6m的鋁合金型材做一個形狀如圖所示的矩形窗框,要使做成的窗框的透光面積最大,則該窗的長,寬應分別做成( 。
A.1.5m,1mB.1m,0.5mC.2m,1mD.2m,0.5m

查看答案和解析>>

同步練習冊答案