如圖,在矩形ABCD中,BD=20,AD>AB,設(shè)∠ABD=α,已知sinα是方程25x2-35x+12=0的一個實根,點E,F(xiàn)分別是BC,DC上的點,EC+CF=8,設(shè)BE=x,△AEF的面積等于y.
(1)求出y與x之間的函數(shù)關(guān)系式;
(2)當E,F(xiàn)兩點在什么位置時,y有最小值并求出這個最小值.
(1)解方程可得sinα1=
3
5
或sinα2=
4
5
,
∵AD>AB,
∴sinα=
3
5
,舍去
取sinα=
4
5
,則有AD=16,AB=12
∵BE=x,
∴EC=16-x,F(xiàn)C=8-EC=x-8,DF=12-FC=20-x.
則△AEF的面積y=16×12-
1
2
×12x-
1
2
×16(20-x)-
1
2
(16-x)(x-8)
=
1
2
x2-10x+96(8<x<16).

(2)y=
1
2
x2-10x+96=
1
2
(x-10)2+46,
所以當x=10,即BE=10,CF=2時,y有最小值為46.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知直線y=x+8交x軸于A點,交y軸于B點,過A、0兩點的拋物線y=ax2+bx(a<O)的頂點C在直線AB上,以C為圓心,CA的長為半徑作⊙C.
(1)求拋物線的對稱軸、頂點坐標及解析式;
(2)將⊙C沿x軸翻折后,得到⊙C′,求證:直線AC是⊙C′的切線;
(3)若M點是⊙C的優(yōu)弧
ABO
(不與0、A重合)上的一個動點,P是拋物線上的點,且∠POA=∠AM0,求滿足條件的P點的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,某隧道口的橫截面是拋物線形,已知路寬AB為6米,最高點離地面的距離OC為5米.以最高點O為坐標原點,拋物線的對稱軸為y軸,1米為數(shù)軸的單位長度,建立平面直角坐標系.求:
(1)以這一部分拋物線為圖象的函數(shù)解析式,并寫出x的取值范圍.
(2)有一輛寬2米,高2.5米的農(nóng)用貨車(貨物最高處與地面AB的距離)能否通過此隧道?
(3)如果該隧道內(nèi)設(shè)雙行道,為了安全起見,在隧道正中間設(shè)有0.2m寬的隔離帶,則該農(nóng)用貨車還能通過隧道嗎?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知拋物線的頂點坐標是(4,2),與y軸的交點是(0,-6)
(1)求拋物線的解析式;
(2)求出拋物線與x軸的交點坐標;
(3)在左邊的坐標系中畫出這個函數(shù)的圖象.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知二次函數(shù)的圖象如圖所示,根據(jù)圖中的數(shù)據(jù),
(1)求二次函數(shù)的解析式;
(2)設(shè)此二次函數(shù)的頂點為P,求△ABP的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,拋物線y=-
3
8
x2-
3
4
x+3
與x軸交于A、B兩點(點A在點B的左側(cè)),與y軸交于點C.
(1)求點A、B的坐標;
(2)設(shè)D為已知拋物線的對稱軸上的任意一點,當△ACD的面積等于△ACB的面積時,求點D的坐標;
(3)若直線l過點E(4,0),M為直線l上的動點,當以A、B、M為頂點所作的直角三角形有且只有三個時,求直線l的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知拋物線y=-x2+mx+n經(jīng)過點A(1,0),B(6,0).
(1)求拋物線的解析式;
(2)拋物線與y軸交于點D,求△ABD的面積;
(3)當y<0,直接寫出自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

某商店經(jīng)銷甲、乙兩種商品,現(xiàn)有如下信息:
信息1:甲、乙兩種商品的進貨單價之和是5元.
信息2:甲商品零售單價比進貨單價多1元,乙商品零售單價比進貨單價的2倍少1元.
信息3:按零售單價購買甲商品3件和乙商品2件,共付了19元.
請根據(jù)以上信息,解答下列問題:
(Ⅰ)甲、乙兩種商品的進貨單價各是多少元?
(Ⅱ)該商品平均每天賣出甲商品500件和乙商品300件,經(jīng)調(diào)查發(fā)現(xiàn),甲、乙兩種商品零售單價分別降0.1元,這兩種商品每天可各多銷售100件,為了使每天獲取更大的利潤,商店決定把甲、乙兩種商品的零售單價都下降m元,在不考慮其他因素的條件下,當m定為多少時,才能使商店每天銷售甲、乙兩種商品獲取的利潤最大?每天的最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖所示,在平面直角坐標系中,矩形ABOC的邊BO在x軸的負半軸上,邊OC在y軸的正半軸上,且AB=1,OB=
3
,矩形ABOC繞點O按順時針方向旋轉(zhuǎn)60°后得到矩形EFOD.點A的對應(yīng)點為點E,點B的對應(yīng)點為點F,點C的對應(yīng)點為點D,拋物線y=ax2+bx+c過點A,E,D.
(1)判斷點E是否在y軸上,并說明理由;
(2)求拋物線的函數(shù)表達式;
(3)在x軸的上方是否存在點P,點Q,使以點O,B,P,Q為頂點的平行四邊形的面積是矩形ABOC面積的2倍,且點P在拋物線上?若存在,請求出點P,點Q的坐標;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案