【題目】某土特產(chǎn)公司組織20輛汽車裝運甲、乙、丙三種土特產(chǎn)共120噸去外地銷售.按計劃20輛車都要裝運,每輛汽車只能裝運同一種土特產(chǎn),且必須裝滿,根據(jù)下表提供的信息,解答以下問題:

土特產(chǎn)品種

每輛汽車運載量(噸)

8

6

5

每噸土特產(chǎn)獲利(百元)

12

16

10


(1)設(shè)裝運甲種土特產(chǎn)的車輛數(shù)為x,裝運乙種土特產(chǎn)的車輛數(shù)為y,求y與x之間的函數(shù)關(guān)系式.
(2)如果裝運每種土特產(chǎn)的車輛都不少于3輛,那么車輛的安排方案有幾種并寫出每種安排方案.
(3)若要使此次銷售獲利最大,應(yīng)采用(2)中哪種安排方案?并求出最大利潤的值.

【答案】
(1)解:∵8x+6y+5(20﹣x﹣y)=120,

∴y=20﹣3x.

∴y與x之間的函數(shù)關(guān)系式為y=20﹣3x.


(2)解:由x≥3,y=20﹣3x≥3,即20﹣3x≥3可得3≤x≤5 ,

又∵x為正整數(shù),

∴x=3,4,5.

故車輛的安排有三種方案,即:

方案一:甲種3輛乙種11輛丙種6輛;

方案二:甲種4輛乙種8輛丙種8輛;

方案三:甲種5輛乙種5輛丙種10輛


(3)解:設(shè)此次銷售利潤為W百元,

W=8x12+6(20﹣3x)16+5[20﹣x﹣(20﹣3x)]10=﹣92x+1920.

∵W隨x的增大而減小,又x=3,4,5

∴當x=3時,W最大=1644(百元)=16.44萬元.

答:要使此次銷售獲利最大,應(yīng)采用(2)中方案一,即甲種3輛,乙種11輛,丙種6輛,最大利潤為16.44萬元.


【解析】(1)因為公司組織20輛汽車裝運甲、乙、丙三種土特產(chǎn)共120噸去外地銷售,設(shè)裝運甲種土特產(chǎn)的車輛數(shù)為x,裝運乙種土特產(chǎn)的車輛數(shù)為y,則裝運丙特產(chǎn)的車輛數(shù)為(20﹣x﹣y),且8x+6y+5(20﹣x﹣y)=120,整理即得y與x之間的函數(shù)關(guān)系式.(2)因為裝運每種土特產(chǎn)的車輛都不少于3輛,所以x≥3,y≥3,20﹣x﹣y≥3,結(jié)合(1)的答案,就可得到關(guān)于x的不等式組,又因x是正整數(shù),從而可求x的取值,進而確定方案.(3)可設(shè)此次銷售利潤為W百元,由表格可得W=8x12+6(20﹣3x)16+5[20﹣x﹣(20﹣3x)]10=﹣92x+1920,根據(jù)y隨x的變化規(guī)律,結(jié)合(2)中所求,就可確定使利潤最大的方案.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點P是正方形ABCD內(nèi)的一點,連接CP,將線段CP繞點C順時針旋轉(zhuǎn)90°,得到線段CQ,連接BP,DQ.

(1)如圖a,求證:△BCP≌△DCQ;
(2)如圖,延長BP交直線DQ于點E.
①如圖b,求證:BE⊥DQ;
②如圖c,若△BCP為等邊三角形,判斷△DEP的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在邊長為1個單位長度的小正方形組成的網(wǎng)格中

(1)ABC平移至A的位置,使點AA對應(yīng),得到ABC′;

(2)線段AABB的關(guān)系是: ;

(3)求ABC的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在正方形網(wǎng)格中,每個小正方形的邊長為1,格點△ABC的頂點AC的坐標分別為(﹣4,5)、(﹣1,3).

1)請在圖中正確作出平面直角坐標系;

2)請作出ABC關(guān)于y軸對稱的△ABC;

3)點B′的坐標為      ,ABC′的面積為      

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,平面直角坐標系中,一次函數(shù)y=﹣2x+1的圖象與y軸交于點A.

(1)若點A關(guān)于x軸的對稱點B在一次函數(shù)y= x+b的圖象上,求b的值,并在同一坐標系中畫出該一次函數(shù)的圖象;
(2)求這兩個一次函數(shù)的圖象與y軸圍成的三角形的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】5250000用科學記數(shù)法表示為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】直線l的同側(cè)有A,B,C三點,如果A,B兩點確定的直線l1B,C兩點確定的直線l2都與l平行,那么AB,C三點在同一條直線上,理由是________________________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一次函數(shù)的圖象經(jīng)過點M,與x軸交于點A,與y軸交于點B,求S△AOB

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正比例函數(shù)y=2x的圖象與一次函數(shù)y=kx+b的圖象交于點A(m,2),一次函數(shù)圖象經(jīng)過點B(﹣2,﹣1),與y軸的交點為C,與x軸的交點為D.
(1)求一次函數(shù)解析式;
(2)求C點的坐標;
(3)求△AOD的面積.

查看答案和解析>>

同步練習冊答案