【題目】如圖,在△ABC中,∠A=36°,∠C=72°,點D在AC上,BC=BD,DE∥BC交AB于點E,則圖中等腰三角形共有( )
A. 3個B. 4個C. 5個D. 6個
【答案】C
【解析】
根據(jù)已知條件分別求出圖中三角形的內(nèi)角度數(shù),再根據(jù)等腰三角形的判定即可找出圖中等腰三角形.
①∵∠A=36°,∠C=72°,∴∠ABC=180°-(∠A+∠C)=72°,∴△ABC是等腰三角形;②∵DE∥BC,∴∠AED=∠ABC=∠C=∠ADE,∴△AED是等腰三角形;③∵BC=BD,∴△DBC是等腰三角形;∵△DBC是等腰三角形,④∴∠BDC=∠C=72°,∠DBC=180°-(∠BDC+∠C)=36°,∴∠EDB=36°,又∵∠EBD=∠ABC-∠DBC=36°,∴△EDB是等腰三角形,⑤∵∠EBD=∠A=36°,∴△ADB是等腰三角形.因此圖中等腰三角形共有5個.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,的面積為.點從點出發(fā),以每秒個單位的速度向點運動:點從點同時出發(fā),以每秒個單位的速度向點運動.規(guī)定其中一個點到達端點時,另一個點也隨之停止運動。
(1)求線段的長;
(2)設點運動的時間為秒,當時,求的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在五邊形ADBCE中,∠ADB=∠AEC=90°,∠DAB=∠EAC,M、N、O分別為AC、AB、BC的中點.
(1)求證:△EMO≌△OND;
(2)若AB=AC,且∠BAC=40°,當∠DAB等于多少時,四邊形ADOE是菱形,并證明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(10分)每年的6月5日為世界環(huán)保日,為提倡低碳環(huán)保,某公司決定購買10臺節(jié)省能源的新機器,現(xiàn)有甲、乙兩種型號的新機器可選,其中每臺的價格、工作量如下表.
甲型機器 | 乙型機器 | |
價格(萬元/臺) | a | b |
產(chǎn)量(噸/月) | 240 | 180 |
經(jīng)調(diào)查:購買一臺甲型機器比購買一臺乙型機器多2萬元,購買2臺甲型機器比購買3臺乙型機器少6萬元.
(1)求a、b的值;
(2)若該公司購買新機器的資金不能超過110萬元,請問該公司有幾種購買方案?
(3)在(2)的條件下,若公司要求每月的產(chǎn)量不低于2040噸,請你為該公司設計一種最省錢的購買方案.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】學習了乘法公式后,老師向同學們提出了如下問題:
①將多項式x2+4x+3因式分解;
②求多項式x2+4x+3的最小值.
請你運用上述的方法解決下列問題:
(1)將多項式x2+8x-20因式分解;
(2)求多項式x2+8x-20的最小值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為加強中小學生安全和禁毒教育,某校組織了“防溺水、交通安全、禁毒”知識競賽,為獎勵在競賽中表現(xiàn)優(yōu)異的班級,學校準備從體育用品商場一次性購買若干個足球和籃球(每個足球的價格相同,每個籃球的價格相同),購買1個足球和1個籃球共需159元;足球單價是籃球單價的2倍少9元.
(1)求足球和籃球的單價各是多少元?
(2)根據(jù)學校實際情況,需一次性購買足球和籃球共20個,但要求購買足球和籃球的總費用不超過1550元,學校最多可以購買多少個足球?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了加強建設“經(jīng)濟強、環(huán)境美、后勁足、群眾富”的實力城鎮(zhèn),聚力脫貧攻堅,全面完成脫貧任務,某鄉(xiāng)鎮(zhèn)特制定一系列幫扶計劃,F(xiàn)決定將A、B兩種類型魚苗共320箱運到某村養(yǎng)殖,其中A種魚苗比B種魚苗多80箱。
(1)求A種魚苗和B種魚苗各多少箱?
(2)現(xiàn)計劃租用甲、乙兩種貨車共8輛,一次性將這批魚苗全部運往同一目的地。已知甲種貨車最多可裝A種魚苗40箱和B種魚苗10箱,乙種貨車最多可裝A種魚苗和B種魚苗各20箱。如果甲種貨車每輛需付運輸費4000元,乙種貨車每輛需付運輸費3600元,則安排甲、乙兩種貨車有哪幾種不同的方案?并說明選擇哪種方案可使運輸費最少?最少運輸費是多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知四邊形ABCD中,∠ABC+∠ADC=180,連接AC,BD.
(1)如圖1,當∠ACD=∠CAD=45時,求∠CBD的度數(shù);
(2)如圖2,當∠ACD=∠CAD=60時,求證:AB+BC=BD;
(3)如圖3,在(2)的條件下,過點C作CK⊥BD于點K,在AB的延長線上取點F,使∠FCG=60,過點F作FH⊥BD于點H,BD=8,AB=5,GK=,求BH的長。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知如圖1,在△ABC中,∠ACB=90°,BC=AC,點D在AB上,DE⊥AB交BC于E,點F是AE的中點
(1)寫出線段FD與線段FC的關系并證明;
(2)如圖2,將△BDE繞點B逆時針旋轉(zhuǎn)α(0°<α<90°),其它條件不變,線段FD與線段FC的關系是否變化,寫出你的結論并證明;
(3)將△BDE繞點B逆時針旋轉(zhuǎn)一周,如果BC=4,BE=2,直接寫出線段BF的范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com