【題目】如圖,PA與⊙O相切于點A,過點A作AB⊥OP,垂足為C,交⊙O于點B.連接PB,AO,并延長AO交⊙O于點D,與PB的延長線交于點E.
(1)求證:PB是⊙O的切線;
(2)若OC=3,AC=4,求sinE的值.
【答案】(1)證明見解析;(2)
【解析】
(1)要證明是圓的切線,須證明過切點的半徑垂直,所以連接OB,證明OB⊥PE即可.
(2)要求sinE,首先應(yīng)找出∠E所在的直角三角形,然后利用直角三角函數(shù)求解即可.而sinE既可放在直角三角形EAP中,也可放在直角三角形EBO中,所以利用相似三角形的性質(zhì)求出EP或EO的長即可解決問題
(1)證明:連接OB
∵PO⊥AB,
∴AC=BC,
∴PA=PB,
在△PAO和△PBO中
,
∴△PAO和≌△PBO,
∴∠OBP=∠OAP=90°,
∴PB是⊙O的切線.
(2)連接BD,則BD∥PO,且BD=2OC=6
在Rt△ACO中,OC=3,AC=4
∴AO=5
在Rt△ACO與Rt△PAO中,
∠APO=∠APO,
∠PAO=∠ACO=90°
∴△ACO△PAO
∴
∴PO=,PA=
∴PB=PA=
在△EPO與△EBD中,
BD∥PO
∴△EPO∽△EBD
∴,
解得EB=,PE=,
∴sinE=.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某超市在“元旦”期間對顧客實行優(yōu)惠,規(guī)定一次性購物優(yōu)惠辦法:
少于200元,不予優(yōu)惠;高于200元但低于500元時,九折優(yōu)惠;消費500元或超過500元時,其中500元部分給予九折優(yōu)惠,超過500元部分給予八折優(yōu)惠.根據(jù)優(yōu)惠條件完成下列任務(wù):
(1)王老師一次性購物600元,他實際付款多少元?
(2)若顧客在該超市一次性購物x元,當(dāng)x小于500但不小于200時,他實際付款0.9x,當(dāng)x大于或等于500元時,他實際付款多少元?(用含x的代數(shù)式表示)
(3)如果王老師兩次購物貨款合計820元,第一次購物的貨款為a元(200<a<300),用含a的式子表示王老師兩次購物實際付款多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,正方形ABCD中,點O是對角線AC的中點,點P是線段AO上(不與A、O重合)的一個動點,過點P作PE⊥PB且PE交邊CD于點E.
(1)求證:PB=PE;
(2)過點E作EF⊥AC于點F,如圖2.若正方形ABCD的邊長為2,則在點P運動的過程中,PF的長度是否發(fā)生變化?若不變,請直接寫出這個不變的值;若變化,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB=AC,∠A=36°,直線MN垂直平分AC交AB于M,
(1)求∠BCM的度數(shù);(2)若AB=5,BC=3,求△BCM的周長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校七年級甲、乙兩班分別選5名同學(xué)參加“學(xué)雷鋒見行動”演講比賽,其預(yù)賽成績?nèi)鐖D:
(1)根據(jù)上圖求出下表中的a,b,c的值(單位:分);
平均數(shù) | 中位數(shù) | 眾數(shù) | 方差 | |
甲班 | 8.5 | a | 8.5 | 0.7 |
乙班 | b | 8 | c | 1.6 |
(2)學(xué)校決定在甲、乙兩班中選取預(yù)賽成績較好的5人參加該活動的縣級演講比賽,求這5人預(yù)賽成績的平均分數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】先尺規(guī)作圖,后進行計算:如圖,△ABC中,∠A=105°.
(1)試求作一點P,使得點P到B、C兩點的距離相等,并且到∠ABC兩邊的距離相等(尺規(guī)作圖,不寫作法,保留作圖痕跡).
(2)在(1)的條件下,若∠ACP=30°,則∠PBC的度數(shù)為 °.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知:∠AOB=90°,OC平分∠AOB,點P在射線OC上.點E在射線OA上,點F在射線OB上,且∠EPF=90°.
(1)如圖1,求證:PE=PF;
(2)如圖2,作點F關(guān)于直線EP的對稱點F′,過F′點作FH⊥OF于H,連接EF′,F′H與EP交于點M.連接FM,圖中與∠EFM相等的角共有 個.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩地相距300km,一輛貨車和一輛轎車先后從甲地出發(fā)向乙地.如圖,線段OA表示貨車離甲地距離y(km)與時間x(h)之間的函數(shù)關(guān)系,折線BCDE表示轎車離甲地距離y(km)與時間x(h)之間的函數(shù)關(guān)系.請根據(jù)圖象,解答下列問題:
(1)線段CD表示轎車在途中停留了 h;
(2)求線段DE對應(yīng)的函數(shù)解析式;
(3)求轎車從甲地出發(fā)后經(jīng)過多長時間追上貨車.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將矩形ABCD(紙片)折疊,使點B與AD邊上的點K重合,EG為折痕;點C與AD邊上的點K重合,FH為折痕.已知∠1=67.5°,∠2=75°,EF=+1,求BC的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com