【題目】我市某中學舉行“中國夢校園好聲音”歌手大賽,高、初中部根據初賽成績,各選出5名選手組成初中代表隊和高中代表隊參加學校決賽.兩個隊各選出的5名選手的決賽成績如圖所示.
(1)根據圖示填寫下表;
平均數(分) | 中位數(分) | 眾數(分) | |
初中部 | 85 | ||
高中部 | 85 | 100 |
(2)結合兩隊成績的平均數和中位數,分析哪個隊的決賽成績較好;
(3)計算兩隊決賽成績的方差并判斷哪一個代表隊選手成績較為穩(wěn)定.
【答案】(1)
平均數(分) | 中位數(分) | 眾數(分) | |
初中部 | 85 | 85 | 85 |
高中部 | 85 | 80 | 100 |
(2)初中部成績好些(3)初中代表隊選手成績較為穩(wěn)定
【解析】解:(1)填表如下:
平均數(分) | 中位數(分) | 眾數(分) | |
初中部 | 85 | 85 | 85 |
高中部 | 85 | 80 | 100 |
(2)初中部成績好些。
∵兩個隊的平均數都相同,初中部的中位數高,
∴在平均數相同的情況下中位數高的初中部成績好些。
(3)∵,
,
∴<,因此,初中代表隊選手成績較為穩(wěn)定。
(1)根據成績表加以計算可補全統(tǒng)計表.根據平均數、眾數、中位數的統(tǒng)計意義回答。
(2)根據平均數和中位數的統(tǒng)計意義分析得出即可。
(3)分別求出初中、高中部的方差比較即可。span>
科目:初中數學 來源: 題型:
【題目】如圖,菱形ABCD的對角線相交于點O,過點D作DE∥AC,且DE= AC,連接CE,OE,連接AE,交OD于點F.若AB=2,∠ABC=60°,則AE的長為( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,P,Q分別是BC,AC上的點,作PR⊥AB,PS⊥AC,垂足分別為R,S,若AQ=PQ,PR=PS,則這四個結論中正確的有( )
①PA平分∠BAC;②AS=AR;③QP∥AR;④△BRP≌△CSP.
A. 4個 B. 3個 C. 2個 D. 1個
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在下列條件中,不能證明△ABD≌△ACD的是( )
A. BD=DC,AB=AC B. ∠ADB=∠ADC,BD=DC
C. ∠B=∠C,∠BAD=∠CAD D. ∠B=∠C,BD=DC
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,△ABC中,AB=AC,∠BAC=90°,P是BC中點,∠EPF=90°,給出四個結論:①∠B=∠BAP;②AE=CF;③PE=PF;④S四邊形AEPF=S△ABC.其中成立的有_______
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】做如下操作:在等腰三角形ABC中,AB= AC,AD平分∠BAC,交BC于點D.將△ABD作關于直線AD的軸對稱變換,所得的象與△ACD重合.
對于下列結論:①在同一個三角形中,等角對等邊;②在同一個三角形中,等邊對等角;
③等腰三角形的頂角平分線、底邊上的中線和高互相重合.
由上述操作可得出的是 ▲ (將正確結論的序號都填上).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(8分)如圖,△ABC的兩條高AD、BE相交于點H,且AD=BD,試說明下列結論成立的理由。(1)∠DBH=∠DAC;(2)△BDH≌△ADC.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,過點A作AE⊥BC,垂足為點E,連接DE,F為線段DE上一點,且∠AFE=∠B.
(1)求證:△ADF∽△DEC;
(2)若AB=4,AD=3 , AF=2 , 求AE的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】嘉淇準備完成題目:化簡:,發(fā)現系數“”印刷不清楚.
(1)他把“”猜成3,請你化簡:(3x2+6x+8)–(6x+5x2+2);
(2)他媽媽說:“你猜錯了,我看到該題標準答案的結果是常數.”通過計算說明原題中“”是幾?
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com