(2008•荊州)如圖,直角梯形ABCD中,∠BCD=90°,AD∥BC,BC=CD,E為梯形內(nèi)一點,且∠BEC=90°,將△BEC繞C點旋轉(zhuǎn)90°使BC與DC重合,得到△DCF,連EF交CD于M.已知BC=5,CF=3,則DM:MC的值為( )

A.5:3
B.3:5
C.4:3
D.3:4
【答案】分析:由題意可得△BCE≌△DCF,從而得到CD=BC,根據(jù)相似三角形的判定方法得到△ECM∽△FDM,則勾股定理可求得DF的長,從而可得到DM:MC的值.
解答:解:由題意知△BCE繞點C順時轉(zhuǎn)動了90度,
∴△BCE≌△DCF,∠ECF=∠DFC=90°,
∴CD=BC=5,DF∥CE,
∴∠ECD=∠CDF,
∵∠EMC=∠DMF,
∴△ECM∽△FDM,
∴DM:MC=DF:CE,
∵DF==4,
∴DM:MC=DF:CE=4:3.
故選C.
點評:本題利用了旋轉(zhuǎn)后的圖形與原圖形全等,及全等三角形的性質(zhì),勾股定理,相似三角形的判定和性質(zhì)求解.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:2008年全國中考數(shù)學試題匯編《二次函數(shù)》(08)(解析版) 題型:解答題

(2008•荊州)如圖,等腰直角三角形紙片ABC中,AC=BC=4,∠ACB=90°,直角邊AC在x軸上,B點在第二象限,A(1,0),AB交y軸于E,將紙片過E點折疊使BE與EA所在直線重合,得到折痕EF(F在x軸上),再展開還原沿EF剪開得到四邊形BCFE,然后把四邊形BCFE從E點開始沿射線EA平移,至B點到達A點停止.設平移時間為t(s),移動速度為每秒1個單位長度,平移中四邊形BCFE與△AEF重疊的面積為S.
(1)求折痕EF的長;
(2)是否存在某一時刻t使平移中直角頂點C經(jīng)過拋物線y=x2+4x+3的頂點?若存在,求出t值;若不存在,請說明理由;
(3)直接寫出S與t的函數(shù)關系式及自變量t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源:2008年全國中考數(shù)學試題匯編《反比例函數(shù)》(04)(解析版) 題型:填空題

(2008•荊州)如圖,一次函數(shù)y=x-2的圖象分別交x軸、y軸于A、B,P為AB上一點且PC為△AOB的中位線,PC的延長線交反比例函數(shù)(k>0)的圖象于Q,S△OQC=,則k的值和Q點的坐標分別為k=    ,Q   

查看答案和解析>>

科目:初中數(shù)學 來源:2009年湖北省十堰市鄖西縣中考適應性考試數(shù)學試卷(解析版) 題型:填空題

(2008•荊州)如圖,一次函數(shù)y=x-2的圖象分別交x軸、y軸于A、B,P為AB上一點且PC為△AOB的中位線,PC的延長線交反比例函數(shù)(k>0)的圖象于Q,S△OQC=,則k的值和Q點的坐標分別為k=    ,Q   

查看答案和解析>>

科目:初中數(shù)學 來源:2008年湖北省荊州市中考數(shù)學試卷(解析版) 題型:解答題

(2008•荊州)如圖,等腰直角三角形紙片ABC中,AC=BC=4,∠ACB=90°,直角邊AC在x軸上,B點在第二象限,A(1,0),AB交y軸于E,將紙片過E點折疊使BE與EA所在直線重合,得到折痕EF(F在x軸上),再展開還原沿EF剪開得到四邊形BCFE,然后把四邊形BCFE從E點開始沿射線EA平移,至B點到達A點停止.設平移時間為t(s),移動速度為每秒1個單位長度,平移中四邊形BCFE與△AEF重疊的面積為S.
(1)求折痕EF的長;
(2)是否存在某一時刻t使平移中直角頂點C經(jīng)過拋物線y=x2+4x+3的頂點?若存在,求出t值;若不存在,請說明理由;
(3)直接寫出S與t的函數(shù)關系式及自變量t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源:2008年湖北省荊州市中考數(shù)學試卷(解析版) 題型:填空題

(2008•荊州)如圖,一次函數(shù)y=x-2的圖象分別交x軸、y軸于A、B,P為AB上一點且PC為△AOB的中位線,PC的延長線交反比例函數(shù)(k>0)的圖象于Q,S△OQC=,則k的值和Q點的坐標分別為k=    ,Q   

查看答案和解析>>

同步練習冊答案