【題目】已知:如圖,在△ABC中,AB=AC,AD平分∠BAC交BC于點(diǎn)D,BE平分∠ABC交AD于點(diǎn)E, F是邊AB上一點(diǎn),以BF為直徑的⊙O經(jīng)過點(diǎn)E.
(1)求證:AD是⊙O的切線;
(2)若BC=4,cosC= ,求⊙O的半徑.
【答案】(1)證明見解析;(2)
【解析】試題分析:(1)連接OE;先證明OE∥BC,得出∠AEO=∠ADB,再證明AD⊥BC,得出∠AEO=90°,OE⊥AD,即可得出結(jié)論;
(2)先求出,再證明,得出對(duì)應(yīng)邊成比例,即可求出半徑.
試題解析:(1)證明:連接OE,則OE=OB,
∴∠1=∠2,
∵BE平分∠ABC,∴∠1=∠3,
∴∠2=∠3,∴OE∥BC,
∴∠AEO=∠ADB,
在△ABC中,AB=AC,AD平分∠BAC,
∴AD⊥BC,∴∠ADB=90°,
∴∠AEO=90°,∴OE⊥AD,
∴AD是⊙O的切線.
(2)在△ABC中,AB=AC,AD平分∠BAC,
∴
∵
在△ABD中,∠ADB=90°,∴
設(shè)⊙O的半徑為r,則AO=6-r.
∵OE∥BC,∴△AOE∽△ABD,
∴ 即
解得
∴⊙O的半徑為
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】長(zhǎng)春市地鐵1號(hào)線,北起北環(huán)站,南至紅咀子站,共設(shè)15個(gè)地下車站,2017年6月30日開通運(yùn)營(yíng),標(biāo)志著吉林省正式邁進(jìn)“地鐵時(shí)代”,15個(gè)站點(diǎn)如圖所示.
某天,王紅從人民廣場(chǎng)站開始乘坐地鐵,在地鐵各站點(diǎn)做志愿者服務(wù),到A站下車時(shí),本次志愿者服務(wù)活動(dòng)結(jié)束,約定向紅咀子站方向?yàn)檎,?dāng)天的乘車記錄如下(單位:站):+5,﹣2,﹣6,+8,+3,﹣4,﹣9,+8
(1)請(qǐng)通過計(jì)算說明A站是哪一站?
(2)相鄰兩站之間的距離為1.3千米,求這次王紅志愿服務(wù)期間乘坐地鐵行進(jìn)的路程是多少千米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=x+4與x軸、y軸分別交于點(diǎn)A和點(diǎn)B,點(diǎn)C、D分別為線段AB、OB的中點(diǎn),點(diǎn)P為OA上一動(dòng)點(diǎn),當(dāng)PC+PD最小時(shí),點(diǎn)P的坐標(biāo)為( 。
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)A、B在反比例函數(shù)y=- 的圖象上,且點(diǎn)A、B的橫坐標(biāo)分別為a、2a(a<0).
(1)求△AOB的面積;
(2)若點(diǎn)C在x軸上,點(diǎn)D在y軸上,且四邊形ABCD為正方形,求a的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】操作探究:已知在紙面上有一數(shù)軸(如圖所示),
(1)折疊紙面,使表示的點(diǎn)1與-1重合,則-2表示的點(diǎn)與 表示的點(diǎn)重合;
(2)折疊紙面,使-1表示的點(diǎn)與3表示的點(diǎn)重合,回答以下問題:
① 5表示的點(diǎn)與數(shù) 表示的點(diǎn)重合;
②表示的點(diǎn)與數(shù) 表示的點(diǎn)重合;
③若數(shù)軸上A、B兩點(diǎn)之間距離為9(A在B的左側(cè)),且A、B兩點(diǎn)經(jīng)折疊后重合,此時(shí)點(diǎn)A表示的數(shù)是 、點(diǎn)B表示的數(shù)是 .
(3)已知在數(shù)軸上點(diǎn)A表示的數(shù)是a,點(diǎn)A移動(dòng)4個(gè)單位,此時(shí)點(diǎn)A表示的數(shù)和a是互為相反數(shù),求a的值。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,點(diǎn)O是邊長(zhǎng)為2的正方形ABCD的中心.
(1)若函數(shù)y=x2+m的圖象過點(diǎn)C,求這個(gè)函數(shù)的解析式;并判斷其函數(shù)圖象是否過A點(diǎn).
(2)若將(1)中的函數(shù)圖象先向右平移1個(gè)單位,再向上平移2個(gè)單位,直接寫出平移后函數(shù)的解析式和頂點(diǎn)坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在四邊形ABCD中,AB∥DC,AB=AD,對(duì)角線AC,BD交于點(diǎn)O,AC平分∠BAD,過點(diǎn)C作CE∥DB交AB的延長(zhǎng)線于點(diǎn)E,連接OE.
(1)求證:四邊形ABCD是菱形;
(2)若∠DAB=60°,且AB=4,求OE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形ABCD中,AC,BD相交于點(diǎn)O,E為AB的中點(diǎn),DE⊥AB.
(1)求∠ABC的度數(shù);
(2)如果AC=,求DE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知多項(xiàng)式與多項(xiàng)式的和中不含有項(xiàng)
(1)_____,_____.
(2)計(jì)算:和的值,并通過計(jì)算的結(jié)果,猜想和的關(guān)系.
(3)請(qǐng)你利用猜想計(jì)算:
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com