【題目】在學(xué)校組織的社會實踐活動中,第一小組負責(zé)調(diào)查全校10000名同學(xué)每天完成家庭作業(yè)時間情況,他們隨機抽取了一部分同學(xué)進行調(diào)查,井繪制了所抽取樣本的頻數(shù)分布表和額數(shù)分布直方圖(如圖).
時間x(小時) | 頻數(shù) | 百分比 |
0.5≤x<1 | 4 | 8% |
1≤x<1.5 | 5 | 10% |
1.5≤x<2 | a | 40% |
2≤x<2.5 | 15 | 30% |
2.5≤x<3 | 4 | 8% |
x≥3 | 2 | b |
頻數(shù)分布表
請根據(jù)圖中信息解答下列問題:
(1)該小組一共抽查了___________人;
(2)頻數(shù)分布表中的a=___________,b=____________;
(3)將頻數(shù)分布直方圖補充完整(直接畫圖,不寫計算過程);
(4)《遼寧省落實教育部等九部門關(guān)于中小學(xué)生減負措施實施方案》規(guī)定,初中生每天書面家庭作業(yè)時間不超過1.5小時,根據(jù)表中數(shù)據(jù),請你提出合理化建議.
【答案】(1)50; (2)20;4%; (3)見解析;(4)見解析
【解析】
(1)根據(jù)0.5≤x<1的頻數(shù)及其所占的百分比即可求得這次調(diào)查的總?cè)藬?shù);(2)根據(jù)a=總?cè)藬?shù)×40%,b=2÷總?cè)藬?shù)×100%求得a、b的值即可;(3)根據(jù)(2)的計算結(jié)果,補全頻數(shù)分布直方圖即可;(4)根據(jù)表格中的數(shù)據(jù)提出建議,合理即可(答案不唯一).
(1)4÷8%=50,
故答案為:50;
(2) a=50×40%=20,b=2÷50×100%=4%;
故答案為:20;4%;
(3)解:如圖.
(4)本題答案不唯一,如教師布置適量的家庭的作業(yè).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在梯形ABCD中,AB∥CD,∠B=90°,AB=2,CD=1,BC=m,P為線段BC上的一動點,且和B、C不重合,連接PA,過P作PE⊥PA交CD所在直線于E.設(shè)BP=x,CE=y.
(1)求y與x的函數(shù)關(guān)系式;
(2)若點P在線段BC上運動時,點E總在線段CD上,求m的取值范圍;
(3)如圖2,若m=4,將△PEC沿PE翻折至△PEG位置,∠BAG=90°,求BP長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】圖1是長方形紙帶,將紙帶沿折疊成圖2,再沿即折疊成圖3,若在圖1中∠DEF=a,則圖3中∠CFE用含有a的式子表示=_______(0<a<60°) .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在邊長為1的正方形網(wǎng)格中,已知三角形ABC,按要求畫圖:
(1)把三角形ABC向下平移4個小格,得到三角形A1B1C1,畫出三角形A1B1C1.
(2)把三角形A1B1C1向右平移3個小格,得到三角形A2B2C2,畫出三角形A2B2C2.
(3)經(jīng)過2次平移,點P(x,y)的對應(yīng)點P2的坐標是___________.
(4)三角形ABC的面積是___________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知平行四邊形ABCD及四邊形外一直線l,四個頂點A、B、C、D到直線l的距離分別為a、b、c、d.
(1)觀察圖形,猜想得出a、b、c、d滿足怎樣的關(guān)系式?證明你的結(jié)論.
(2)現(xiàn)將l向上平移,你得到的結(jié)論還一定成立嗎?請分情況寫出你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個不透明的口袋中裝有4個完全相同的小球,分別標有數(shù)字1,2,3,4,另外有一個可以自由旋轉(zhuǎn)的圓盤,被分成面積相等的3個扇形區(qū)域,分別標有數(shù)字1,2,3(如圖所示).
(1)從口袋中摸出一個小球,所摸球上的數(shù)字大于2的概率為 ;
(2)小龍和小東想通過游戲來決定誰代表學(xué)校參加歌詠比賽,游戲規(guī)則為:一人從口袋中摸出一個小球,另一人轉(zhuǎn)動圓盤,如果所摸球上的數(shù)字與圓盤上轉(zhuǎn)出數(shù)字之和小于5,那么小龍去;否則小東去.你認為游戲公平嗎?請用樹狀圖或列表法說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC內(nèi)接于⊙O,∠B=60°,CD是⊙O的直徑,點P是CD延長線上的一點,且AP=AC.
(1)求證:PA是⊙O的切線;
(2)求證:AC2=COCP;
(3)若PD=,求⊙O的直徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在□ABCD中,P是CD邊上一點,且AP、BP分別平分∠DAB、∠CBA,若AD=5,AP=6,則△APB的面積是_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,點O是直線AB上一點,OC、OD為從點O引出的兩條射線,∠BOD=30°,∠COD=∠AOC.
(1)如圖①,求∠AOC的度數(shù);
(2)如圖②,在∠AOD的內(nèi)部作∠MON=90°,請直接寫出∠AON與∠COM之間的數(shù)量關(guān)系 ;
(3)在(2)的條件下,若OM為∠BOC的角平分線,試說明∠AON=∠CON.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com