如圖,拋物線與x軸交于點(diǎn)A和點(diǎn)B,與y軸交于點(diǎn)C,已知點(diǎn)B的坐標(biāo)為(3,0).
(1)求a的值和拋物線的頂點(diǎn)坐標(biāo);
(2)分別連接AC、BC.在x軸下方的拋物線上求一點(diǎn)M,使△AMC與△ABC的面積相等;
(3)設(shè)N是拋物線對(duì)稱軸上的一個(gè)動(dòng)點(diǎn),d=|AN﹣CN|.探究:是否存在一點(diǎn)N,使d的值最大?若存在,請(qǐng)直接寫出點(diǎn)N的坐標(biāo)和d的最大值;若不存在,請(qǐng)簡(jiǎn)單說(shuō)明理由.
(1)。拋物線的頂點(diǎn)坐標(biāo)為(﹣,)。
(2)M點(diǎn)的坐標(biāo)是(﹣9,﹣4)。
(3)在拋物線對(duì)稱軸上存在一點(diǎn)N,能夠使d=|AN﹣CN|的值最大。理由見(jiàn)解析。
解析分析:(1)先把點(diǎn)B的坐標(biāo)代入,可求得a的值,再利用配方法將一般式化為頂點(diǎn)式,即可求得拋物線的頂點(diǎn)坐標(biāo)。
(2)先由拋物線的解析式,求出與x軸的交點(diǎn)A的坐標(biāo),與y軸的交點(diǎn)C的坐標(biāo),再由△AMC與△ABC的面積相等,得出這兩個(gè)三角形AC邊上的高相等,又由點(diǎn)B與點(diǎn)M都在AC的下方,得出BM∥AC,則點(diǎn)M既在過(guò)B點(diǎn)與AC平行的直線上,又在拋物線上,所以先運(yùn)用待定系數(shù)法求出直線AC的解析式為y=x+2,再設(shè)直線BM的解析式為y=x+n,將點(diǎn)B(3,0)代入,求出n的值,得到直線BM的解析式為,然后解方程組,即可求出點(diǎn)M的坐標(biāo)。
(3)連接BC并延長(zhǎng),交拋物線的對(duì)稱軸x=﹣于點(diǎn)N,連接AN,根據(jù)軸對(duì)稱的性質(zhì)得出AN=BN,并且根據(jù)三角形三邊關(guān)系定理得出此時(shí)d=|AN﹣CN|=|BN﹣CN|=BC最大.運(yùn)用待定系數(shù)法求出直線BC的解析式,再將x=﹣代入,求出y的值,得到點(diǎn)N的坐標(biāo),然后利用勾股定理求出d的最大值BC即可。
解:(1)∵拋物線經(jīng)過(guò)點(diǎn)B(3,0),
∴,解得。
∴。
∵,
∴拋物線的頂點(diǎn)坐標(biāo)為(﹣,)。
(2)∵拋物線的對(duì)稱軸為直線x=﹣,與x軸交于點(diǎn)A和點(diǎn)B,點(diǎn)B的坐標(biāo)為(3,0),
∴點(diǎn)A的坐標(biāo)為(﹣6,0)。
又∵當(dāng)x=0時(shí),y=2,∴C點(diǎn)坐標(biāo)為(0,2)。
設(shè)直線AC的解析式為y=kx+b,
則,解得:。
∴直線AC的解析式為y=x+2。
∵S△AMC=S△ABC,∴點(diǎn)B與點(diǎn)M到AC的距離相等。
又∵點(diǎn)B與點(diǎn)M都在AC的下方,∴BM∥AC。
設(shè)直線BM的解析式為y=x+n,將點(diǎn)B(3,0)代入,得×3+n=0,解得n=﹣1。
∴直線BM的解析式為.
由,解得,。
∴M點(diǎn)的坐標(biāo)是(﹣9,﹣4)。
(3)在拋物線對(duì)稱軸上存在一點(diǎn)N,能夠使d=|AN﹣CN|的值最大。理由如下:
∵拋物線與x軸交于點(diǎn)A和點(diǎn)B,
∴點(diǎn)A和點(diǎn)B關(guān)于拋物線的對(duì)稱軸對(duì)稱。
連接BC并延長(zhǎng),交直線x=﹣于點(diǎn)N,連接AN,則AN=BN,此時(shí)d=|AN﹣CN|=|BN﹣CN|=BC最大。
設(shè)直線BC的解析式為y=mx+t,將B(3,0),C(0,2)兩點(diǎn)的坐標(biāo)代入,
得,解得:。
∴直線BC的解析式為y=x+2。,
當(dāng)x=﹣時(shí),y=-×(﹣)+2=3。
∴點(diǎn)N的坐標(biāo)為(﹣,3),d的最大值為。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
已知:直線過(guò)拋物線的頂點(diǎn)P,如圖所示.
(1)頂點(diǎn)P的坐標(biāo)是 ;
(2)若直線y=ax+b經(jīng)過(guò)另一點(diǎn)A(0,11),求出該直線的表達(dá)式;
(3)在(2)的條件下,若有一條直線y=mx+n與直線y=ax+b關(guān)于x軸成軸對(duì)稱,求直線y=mx+n與拋物線的交點(diǎn)坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在⊙C的內(nèi)接△AOB中,AB=AO=4,tan∠AOB=,拋物線(a≠0)經(jīng)過(guò)點(diǎn)A(4,0)與點(diǎn)(﹣2,6).
(1)求拋物線的解析式;
(2)直線m與⊙C相切于點(diǎn)A,交y軸于點(diǎn)D,動(dòng)點(diǎn)P在線段OB上,從點(diǎn)O出發(fā)向點(diǎn)B運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)Q在線段DA上,從點(diǎn)D出發(fā)向點(diǎn)A運(yùn)動(dòng),點(diǎn)P的速度為每秒1個(gè)單位長(zhǎng),點(diǎn)Q的速度為每秒2個(gè)單位長(zhǎng).當(dāng)PQ⊥AD時(shí),求運(yùn)動(dòng)時(shí)間t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
已知拋物線y=a(x﹣3)2+2經(jīng)過(guò)點(diǎn)(1,﹣2).
(1)求a的值;
(2)若點(diǎn)A(m,y1)、B(n,y2)(m<n<3)都在該拋物線上,試比較y1與y2的大。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖①,若二次函數(shù)的圖象與x軸交于點(diǎn)A(-2,0),B(3,0)兩點(diǎn),點(diǎn)A關(guān)于正比例函數(shù)的圖象的對(duì)稱點(diǎn)為C。
(1)求b、c的值;
(2)證明:點(diǎn)C 在所求的二次函數(shù)的圖象上;
(3)如圖②,過(guò)點(diǎn)B作DB⊥x軸交正比例函數(shù)的圖象于點(diǎn)D,連結(jié)AC,交正比例函數(shù)的圖象于點(diǎn)E,連結(jié)AD、CD。如果動(dòng)點(diǎn)P從點(diǎn)A沿線段AD方向以每秒2個(gè)單位的速度向點(diǎn)D運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)Q從點(diǎn)D沿線段DC方向以每秒1個(gè)單位的速度向點(diǎn)C運(yùn)動(dòng),當(dāng)其中一個(gè)到達(dá)終點(diǎn)時(shí),另一個(gè)隨之停止運(yùn)動(dòng),連結(jié)PQ、QE、PE,設(shè)運(yùn)動(dòng)時(shí)間為t秒,是否存在某一時(shí)刻,使PE平分∠APQ,同時(shí)QE平分∠PQC,若存在,求出t的值;若不存在,請(qǐng)說(shuō)明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,拋物線與直線交于C,D兩點(diǎn),其中點(diǎn)C在y軸上,點(diǎn)D的坐標(biāo)為。點(diǎn)P是y軸右側(cè)的拋物線上一動(dòng)點(diǎn),過(guò)點(diǎn)P作PE⊥x軸于點(diǎn)E,交CD于點(diǎn)F.
(1)求拋物線的解析式;
(2)若點(diǎn)P的橫坐標(biāo)為m,當(dāng)m為何值時(shí),以O(shè),C,P,F(xiàn)為頂點(diǎn)的四邊形是平行四邊形?請(qǐng)說(shuō)明理由;
(3)若存在點(diǎn)P,使∠PCF=450,請(qǐng)直接寫出相應(yīng)的點(diǎn)P的坐標(biāo)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
在平面直角坐標(biāo)系xOy中,拋物線()與y軸交于點(diǎn)A,其對(duì)稱軸與x軸交于點(diǎn)B。
(1)求點(diǎn)A,B的坐標(biāo);
(2)設(shè)直線l與直線AB關(guān)于該拋物線的對(duì)稱軸對(duì)稱,求直線l的解析式;
(3)若該拋物線在這一段位于直線l的上方,并且在這一段位于直線AB的下方,求該拋物線的解析式。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:單選題
某閉合電路中,電源的電壓為定值,電流I(A)與電阻R(Ω)成反比例.圖表示的是該電路中電流I與電阻R之間函數(shù)關(guān)系的圖象,則用電阻R表示電流I的函數(shù)解析式為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:單選題
已知點(diǎn)(-1,y1)、(2,y2)、(3,y3)在反比例函數(shù)的圖象上.下列結(jié)論中正確的是
A.y1>y2>y3 | B.y1>y3>y2 | C.y3>y1>y2 | D.y2>y3>y1 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com