【題目】如圖,在Rt△ABC中,∠ACB=90°,CD⊥AB于點D , 如果AC=3,AB=6,那么AD的值為( 。
A.
B.
C.
D.

【答案】A
【解析】解答:如圖,∵在Rt△ABC中,∠ACB=90°,CD⊥AB ,
∴AC2=ADAB ,
又∵AC=3,AB=6,
∴32=6AD , 則AD=
故選:A
分析:先證明△BAD∽△BCA , 則利用相似的性質(zhì)得AB:BC=BD:AB , 然后根據(jù)比例性質(zhì)得到AB2=BCBD.
【考點精析】掌握解直角三角形是解答本題的根本,需要知道解直角三角形的依據(jù):①邊的關(guān)系a2+b2=c2;②角的關(guān)系:A+B=90°;③邊角關(guān)系:三角函數(shù)的定義.(注意:盡量避免使用中間數(shù)據(jù)和除法)

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△OAB中,OA=OB=10,∠AOB=70°,以點O為圓心,6為半徑的優(yōu)弧 分別交OA、OB于點M,N.
(1)點P在右半弧上(∠BOP是銳角),將OP繞點O逆時針旋轉(zhuǎn)70°得OP′.求證:AP=BP′;
(2)點T在左半弧上,若AT與弧相切,求點T到OA的距離;
(3)設(shè)點Q在優(yōu)弧 上,當△AOQ的面積最大時,直接寫出∠BOQ的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】用適當方法解下列方程.
(1)x2﹣6x+5=0;
(2)2x2+3x﹣5=0.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下列一段文字,然后回答下列問題:

已知平面內(nèi)兩點M(x1,y1)、N(x2,y2),則這兩點間的距離可用下列公式計算

MN=.

例如:已知P(3,1)、Q(1,-2),則這兩點的距離PQ=.特別地,如果兩點M(x1,y1)、N(x2,y2)所在的直線與坐標軸重合或平行于坐標軸或垂直于坐標軸,那么這兩點間的距離公式可簡化為MN=|x1-x2||y1-y2|.

(1)已知A(1,2)、B(-2,-3),試求A、B兩點間的距離;

(2)已知A、B在平行于y軸的同一條直線上,點A的縱坐標為5,點B的縱坐標為-1,試求A、B兩點間的距離;

(3)已知△ABC的頂點坐標分別為A(0,4)、B(-1,2)、C(4,2),你能判定△ABC的形狀嗎?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC的三邊AB、BC、CA長分別是2030、40,其三條角平分線將△ABC分為三個三角形,則SABOSBCOSCAO等于( )

A. 111

B. 123

C. 234

D. 345

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,己知△ABC , 任取一點O , 連AO , BOCO , 并取它們的中點D , E , F , 得△DEF , 則下列說法正確的個數(shù)是( 。
①△ABC與△DEF是位似圖形; ②△ABC與△DEF是相似圖形;
③△ABC與△DEF的周長比為1:2;④△ABC與△DEF的面積比為4:1.
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,ADBC,E是AB的中點,連接DE并延長交CB的延長線于點F,點G在邊BC上,且GDF=ADF

1求證:ADE≌△BFE;

2連接EG,判斷EG與DF的位置關(guān)系并說明理由

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某水渠的橫斷面是等腰梯形,已知其斜坡ADBC的坡度為1:0.6,現(xiàn)測得放水前的水面寬EF為1.2米,當水閘放水后,水渠內(nèi)水面寬GH為2.1米求放水后水面上升的高度是( 。

A.0.55
B.0.8
C.0.6
D.0.75

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在梯形ABCD中,ABDC , EF是梯形的中位線,ACEFG , BDEFH , 以下說法錯誤的是( 。
A.ABEF
B.AB+DC=2EF
C.四邊形AEFB和四邊形ABCD相似
D.EG=FH

查看答案和解析>>

同步練習(xí)冊答案