)在銳角△ABC中,AB=4,BC=5,∠ACB=45°,將△ABC繞點B按逆時針方向旋轉(zhuǎn),得到△A1BC1.
(1)如圖1,當(dāng)點C1在線段CA的延長線上時,求∠CC1A1的度數(shù);
(2)如圖2,連接AA1,CC1.若△ABA1的面積為4,求△CBC1的面積;
(3)如圖3,點E為線段AB中點,點P是線段AC上的動點,在△ABC繞點B按逆時針方向旋轉(zhuǎn)過程中,點P的對應(yīng)點是點P1,求線段EP1長度的最大值與最小值.
解:(1)由旋轉(zhuǎn)的性質(zhì)可得∠A1C1B =∠ACB =45°,BC=BC1
∴∠CC1B =∠C1CB =45°
∴∠CC1A1=∠CC1B+∠A1C1B=45°+45°=90°
(2)∵△ABC≌△A1BC1
∴BA=BA1,BC=BC1,∠ABC=∠A1BC1
∴ , ∠ABC+∠ABC1=∠A1BC1+∠ABC1
∴∠ABA1=∠CBC1
∴△ABA1∽△CBC1
∴
∵
∴
(3)過點B作BD⊥AC,D為垂足
∵△ABC為銳角三角形
∴點D在線段AC上Rt△BCD中,BD=BC×sin45°=
P在AC上運動至垂足點D,△ABC繞點B旋轉(zhuǎn),
使點P的對應(yīng)點P1在線段AB上時,EP1最小,最小值為-2② 當(dāng)P在AC上運動至點C,△ABC繞點B旋轉(zhuǎn),使點P的對應(yīng)點P1在線段AB的延長線上時,EP1最大,最大值為2+5=7 。
科目:初中數(shù)學(xué) 來源: 題型:
在平面直角坐標(biāo)系中,將拋物線y=3x2先向右平移1個單位,再向上平移2個單位,得到的拋物線的解析式是( )
| A. | y=3(x+1)2+2 | B. | y=3(x+1)2﹣2 | C. | y=3(x﹣1)2+2 | D. | y=3(x﹣1)2﹣2 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
已知拋物線與x軸交于點、C,與y軸交于點B(0,3),拋物線的頂點為p。
(1)求拋物線的解析式;
(2)若拋物線向下平移k個單位后經(jīng)過點(-5,6)。
①求k的值及平移后拋物線所對應(yīng)函數(shù)的最小值;
②設(shè)平移后拋物線與y軸交于點D,頂點為Q,點M是平移后的拋物線上的一個動點。請?zhí)骄浚寒?dāng)點M在何處時,△MBD的而積是△MPQ面積的2倍?求出此時點M的坐標(biāo)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
某種商品原價是120元,經(jīng)兩次降價后的價格是100元,求平均每次降價的百分率.設(shè)平均每次降價的百分率為,可列方程為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
一個不透明的袋子中裝有大小、質(zhì)地完全相同的3只球,球上分別標(biāo)有2,3,5三個數(shù)字.
(1)從這個袋子中任意摸一只球,所標(biāo)數(shù)字是奇數(shù)的概率是 ▲ ;
(2)從這個袋子中任意摸一只球,記下所標(biāo)數(shù)字,不放回,再從從這個袋子中任意摸一只球,記下所標(biāo)數(shù)字.將第一次記下的數(shù)字作為十位數(shù)字,第二次記下的數(shù)字作為個位數(shù)字,組成一個兩位數(shù).求所組成的兩位數(shù)是5的倍數(shù)的概率.(請用“畫樹狀圖”或“列表”的方法寫出過程)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,點E、F分別為正方形ABCD中AB、BC邊的中點,連接AF、DE相
交于點G,連接CG,則cos∠CGD=( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
寧波市軌道交通1號線一期工程批復(fù)總投資億元,工程于2009年6月全面開工建設(shè),工期為5年,到2014年通車試運營. 億元用科學(xué)記數(shù)法表示為
(A)元 (B)元 (C)元 (D)元
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com