【題目】某企業(yè)接到一批產(chǎn)品的生產(chǎn)任務(wù),按要求必須在15天內(nèi)完成.已知每件產(chǎn)品的售價為65元,工人甲第x天生產(chǎn)的產(chǎn)品數(shù)量為y件,yx滿足如下關(guān)系:

y=.

(1)工人甲第幾天生產(chǎn)的產(chǎn)品數(shù)量為80件?

(2)設(shè)第x天(0≤x≤15)生產(chǎn)的產(chǎn)品成本為P/件,Px的函數(shù)圖象如圖,工人甲第x天創(chuàng)造的利潤為W元.

①求Px的函數(shù)關(guān)系式;

②求Wx的函數(shù)關(guān)系式,并求出第幾天時,利潤最大,最大利潤是多少?

【答案】(1)第14;(2)P=W=;14天時,利潤最大,最大利潤為1280元.

【解析】

(1)根據(jù)y=80求得x即可;

(2)先根據(jù)函數(shù)圖象求得P關(guān)于x的函數(shù)解析式,再結(jié)合x的范圍分類討論,根據(jù)“總利潤=單件利潤×銷售量”列出函數(shù)解析式,由二次函數(shù)的性質(zhì)求得最值即可

1)根據(jù)題意∵若8x=80,x=10>5,不符合題意;

5x+10=80,解得x=14.

工人甲第14天生產(chǎn)的產(chǎn)品數(shù)量為80

(2)由圖象知當(dāng)0≤x≤5,P=40;

當(dāng)5<x≤15,設(shè)Pkx+b,將(5,40),(15,50)代入得,∴,∴Px+35.

綜上Px的函數(shù)關(guān)系式為P;

當(dāng)0≤x≤5,W=(65﹣40)×8x=200x,當(dāng)5<x≤15,W=(65﹣x﹣35)(5x+10)=﹣5x2+140x+300.

綜上所述Wx的函數(shù)關(guān)系式為W;

當(dāng)0≤x≤5,W=200x

∵200>0,∴Wx的增大而增大,∴當(dāng)x=5,W最大為1000;

當(dāng)5<x≤15,W=﹣5(x﹣14)2+1280,當(dāng)x=14,W最大值為1280

綜上所述14天時利潤最大,最大利潤為1280

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(2017廣東省深圳市)如圖,拋物線經(jīng)過點A(﹣1,0),B(4,0),交y軸于點C;

(1)求拋物線的解析式(用一般式表示);

(2)點Dy軸右側(cè)拋物線上一點,是否存在點D使?若存在請直接給出點D坐標(biāo);若不存在,請說明理由;

(3)將直線BC繞點B順時針旋轉(zhuǎn)45°,與拋物線交于另一點E,求BE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在成都地鐵6號線某站通道的建設(shè)中,建設(shè)工人將坡長為10米(AB=10米),坡角60°(∠BAE=60°)的斜坡通道改造成坡角為45°(∠BDE=45°)的斜坡通道,使斜坡的起點從點A處向左平移至點D處,求截面圖上AD的長.(結(jié)果保留根號).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在RtABC中,∠ACB90°,以斜邊AB為邊向外作正方形ABDE,且正方形的對角線交于點O,連接OC.已知AC5,OC12,則另一直角邊BC的長為_____.(提示:分別過OCA、CB作垂線)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=ax2+bx+2x軸相交于A(﹣1,0),B(4,0)兩點,與y軸相交于點C.

(1)求拋物線的解析式;

(2)將△ABCAB中點M旋轉(zhuǎn)180°,得到△BAD.

①求點D的坐標(biāo);

②判斷四邊形ADBC的形狀,并說明理由;

(3)在該拋物線對稱軸上是否存在點P,使△BMP與△BAD相似?若存在,請求出所有滿足條件的P點的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,人工噴泉有一個豎直的噴水槍AB,噴水口A距地面2m,噴出水流的運動路線是拋物線. 如果水流的最高點P到噴水槍AB所在直線的距離為1m,且到地面的距離為3.6m,求水流的落地點C到水槍底部B的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一段拋物線:y=﹣x(x﹣5)(0≤x≤5),記為C1,它與x軸交于點O,A1;將C1繞點A1旋轉(zhuǎn)180°得C2,交x軸于點A2;將C2繞點A2旋轉(zhuǎn)180°得C3,交x軸于點A3;…如此進行下去,得到一“波浪線”,若點P(2018,m)在此“波浪線”上,則m的值為( )

A. 4 B. ﹣4 C. ﹣6 D. 6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,在平面直角坐標(biāo)系中,點P(0,2),以P為圓心,OP為半徑的半圓與y軸的另一個交點是C,一次函數(shù)y=﹣x+m(m為實數(shù))的圖象為直線l,l分別交x軸,y軸于A,B兩點,如圖1.

(1)B點坐標(biāo)是 (用含m的代數(shù)式表示),∠ABO= °;

(2)若點N是直線AB與半圓CO的一個公共點(兩個公共點時,N為右側(cè)一點),過點N作⊙P的切線交x軸于點E,如圖2.

①是否存在這樣的m的值,使得△EBN是直角三角形?若存在,求出m的值;若不存在,請說明理由.

②當(dāng)時,求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在路燈下,小明的身高如圖中線段AB所示,他在地面上的影子如圖中線段AC所示,小亮的身高如圖中線段FG所示,路燈燈泡在線段DE上.

1)請你確定燈泡所在的位置,并畫出小亮在燈光下形成的影子.

2)如果小明的身高AB=1.6m,他的影子長AC=1.4m,且他到路燈的距離AD=2.1m,求燈泡的高.

查看答案和解析>>

同步練習(xí)冊答案