【題目】如圖,在△ABC中,AB=AC,以AB為直徑的O交BC于點(diǎn)D,過(guò)點(diǎn)D作EF⊥AC于點(diǎn)E,交AB的延長(zhǎng)線(xiàn)于點(diǎn)F.
(1)判斷直線(xiàn)DE與⊙O的位置關(guān)系,并說(shuō)明理由;
(2)如果AB=5,BC=6,求DE的長(zhǎng).
【答案】
(1)解:相切,理由如下:
連接AD,OD,
∵AB為⊙O的直徑,
∴∠ADB=90°.
∴AD⊥BC.
∵AB=AC,
∴CD=BD= BC.
∵OA=OB,
∴OD∥AC.
∴∠ODE=∠CED.
∵DE⊥AC,
∴∠ODE=∠CED=90°.
∴OD⊥DE.
∴DE與⊙O相切.
(2)解:由(1)知∠ADC=90°,
∴在Rt△ADC中,由勾股定理得
AD= =4.
∵SACD= ADCD= ACDE,
∴ ×4×3= ×5DE.
∴DE=
【解析】(1)連接AD,OD,根據(jù)已知條件證得OD⊥DE即可;(2)根據(jù)勾股定理計(jì)算即可.
【考點(diǎn)精析】利用等腰三角形的性質(zhì)和直線(xiàn)與圓的三種位置關(guān)系對(duì)題目進(jìn)行判斷即可得到答案,需要熟知等腰三角形的兩個(gè)底角相等(簡(jiǎn)稱(chēng):等邊對(duì)等角);直線(xiàn)與圓有三種位置關(guān)系:無(wú)公共點(diǎn)為相離;有兩個(gè)公共點(diǎn)為相交,這條直線(xiàn)叫做圓的割線(xiàn);圓與直線(xiàn)有唯一公共點(diǎn)為相切,這條直線(xiàn)叫做圓的切線(xiàn),這個(gè)唯一的公共點(diǎn)叫做切點(diǎn).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若關(guān)于x的一元二次方程x2﹣3x+p=0(p≠0)的兩個(gè)不相等的實(shí)數(shù)根分別為a和b,且a2﹣ab+b2=18,則 + 的值是( )
A.3
B.﹣3
C.5
D.﹣5
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線(xiàn)y=x﹣1與反比例函數(shù)y= 的圖象交于A、B兩點(diǎn),與x軸交于點(diǎn)C,已知點(diǎn)A的坐標(biāo)為(﹣1,m).
(1)求反比例函數(shù)的解析式;
(2)若點(diǎn)P(n,﹣1)是反比例函數(shù)圖象上一點(diǎn),過(guò)點(diǎn)P作PE⊥x軸于點(diǎn)E,延長(zhǎng)EP交直線(xiàn)AB于點(diǎn)F,求△CEF的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線(xiàn)y=ax2﹣4ax+b與x軸的一個(gè)交點(diǎn)A的坐標(biāo)為(3,0),與y軸交于點(diǎn)C.
(1)求拋物線(xiàn)與x軸的另一個(gè)交點(diǎn)B的坐標(biāo);
(2)當(dāng)a=﹣1時(shí),將拋物線(xiàn)向上平移m個(gè)單位后經(jīng)過(guò)點(diǎn)(5,﹣7).
①求m的值及平移前、后拋物線(xiàn)的頂點(diǎn)P、Q的坐標(biāo).
②設(shè)平移后拋物線(xiàn)與y軸交于點(diǎn)D,問(wèn):在平移后的拋物線(xiàn)上是否存在點(diǎn)E,使得△ECD的面積是△EPQ的3倍?若存在,請(qǐng)求出點(diǎn)E的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD為平行四邊形,延長(zhǎng)AD到E,使DE=AD,連接EB,EC,DB,添加一個(gè)條件,不能使四邊形DBCE成為矩形的是( )
A.AB=BE
B.BE⊥DC
C.∠ADB=90°
D.CE⊥DE
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:△ABC是邊長(zhǎng)為4的等邊三角形,點(diǎn)O在邊AB上,⊙O過(guò)點(diǎn)B且分別與邊AB,BC相交于點(diǎn)D,E,EF⊥AC,垂足為F.
(1)求證:直線(xiàn)EF是⊙O的切線(xiàn);
(2)當(dāng)直線(xiàn)DF與⊙O相切時(shí),求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù)y=x2+bx+c與y=x的圖像如圖所示,有以下結(jié)論:
①b2﹣4c>0;
②b+c+1=0;
③3b+c+6=0;
④當(dāng)1<x<3時(shí),x2+(b﹣1)x+c<0.
其中正確的個(gè)數(shù)為( )
A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,把矩形OCBA放置于直角坐標(biāo)系中,OC=3,BC=2,取AB的中點(diǎn)M,連接MC,把△MBC沿x軸的負(fù)方向平移OC的長(zhǎng)度后得到△DAO.
(1)試直接寫(xiě)出點(diǎn)D的坐標(biāo);
(2)已知點(diǎn)B與點(diǎn)D在經(jīng)過(guò)原點(diǎn)的拋物線(xiàn)上,點(diǎn)P在第一象限內(nèi)的該拋物線(xiàn)上移動(dòng),過(guò)點(diǎn)P作PQ⊥x軸于點(diǎn)Q,連接OP.
①若以O(shè)、P、Q為頂點(diǎn)的三角形與△DAO相似,試求出點(diǎn)P的坐標(biāo);
②試問(wèn)在拋物線(xiàn)的對(duì)稱(chēng)軸上是否存在一點(diǎn)T,使得|TO﹣TB|的值最大?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com