已知△ABC是等邊三角形.

(1)將△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)角 (0°<<180°),得到△ADE,BD和EC所在直線相交于點(diǎn)O.
①如圖,當(dāng)a =20°時(shí),△ABD與△ACE是否全等?       (填“是”或“否”),∠BOE=        度;
②當(dāng)△ABC旋轉(zhuǎn)到如圖b所在位置時(shí),求∠BOE的度數(shù);
(2)如圖,c在AB和AC上分別截取點(diǎn)B′和C′,使AB=AB′,AC=AC′,連接B′C′,將△AB′C′繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)角 (0°< <180°),得到△ADE
BD和EC所在直線相交于點(diǎn)O,請(qǐng)利用圖c探索∠BOE的度數(shù),直接寫(xiě)出結(jié)果,不必說(shuō)明理由.
(1)①是,∠BOE=120°②∠BOE=120°(2)當(dāng)0°< <30°時(shí),∠BOE=60°
當(dāng)30°< <180°時(shí),∠BOE=120°

試題分析:(1)是∠BOE=120°
(2)由已知得:△ABC和△ADE是全等的等邊三角形
∴AB=AD=AC=AE
∵△ADE是由△ABC繞點(diǎn)A旋轉(zhuǎn)得到的
∴∠BAD=∠CAE=            
∴△BAD≌△CAE
∴∠ADB=∠AEC
∵∠ADB+∠ABD+∠BAD=180°
∴∠AEC+∠ABO+∠BAD=180°
∵∠ABO+∠AEC+∠BAE+∠BOE=360°
∵∠BAE=∠BAD+∠DAE
∴∠DAE+∠BOE=180°
又∵∠DAE=60°
∴∠BOE=120° 
(3)如圖

c在AB和AC上分別截取點(diǎn)B′和C′,使AB=AB′,AC=AC′,連接B′C′,將△AB′C′繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)角 (0°< <180°),得到△ADE,AB=AB′,AC=AC′,可得,根據(jù)旋轉(zhuǎn)的特征,所以
當(dāng)0°< <30°時(shí),∠BOE=60°
當(dāng)30°< <180°時(shí),∠BOE=120°
點(diǎn)評(píng):本題考查旋轉(zhuǎn),解答本題需要考生掌握旋轉(zhuǎn)的概念和特征,根據(jù)旋轉(zhuǎn)的特征來(lái)正確解答出本題
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在邊長(zhǎng)為1的正方形組成的網(wǎng)格中,△ABC的頂點(diǎn)均在格點(diǎn)上,點(diǎn)A、B、C的坐標(biāo)分別是A(﹣2,3)、B(﹣1,2)、C(﹣3,1),△ABC繞點(diǎn)O順時(shí)針旋轉(zhuǎn)90°后得到△A1B1C1
(1)在正方形網(wǎng)格中作出△A1B1C1
(2)在旋轉(zhuǎn)過(guò)程中,點(diǎn)A經(jīng)過(guò)的路徑的長(zhǎng)度為    ;(結(jié)果保留π)
(3)在y軸上找一點(diǎn)D,使DB+DB1的值最小,并求出D點(diǎn)坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在Rt△OAB中,∠OAB=90°,且點(diǎn)B的坐標(biāo)為(4,2).
 
(1)畫(huà)出△OAB繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°后的△OA1B1;
(2)求點(diǎn)A旋轉(zhuǎn)到點(diǎn)A1所經(jīng)過(guò)的路線長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,將邊長(zhǎng)為3個(gè)單位的等邊△ABC沿邊BC向右平移2個(gè)單位得到△DEF,則四邊形ABFD的周長(zhǎng)為          個(gè)單位.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系xoy中,已知OABC的兩個(gè)頂點(diǎn)A、C的坐標(biāo)分別為(1,2)、(3,0).

(1)畫(huà)出OABC關(guān)于y軸對(duì)稱(chēng)的OA1B1C1,并寫(xiě)出點(diǎn)B1的坐標(biāo);
(2)畫(huà)出OABC繞點(diǎn)O順時(shí)針?lè)较蛐D(zhuǎn)90°后得到的OA2B2C2.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如下書(shū)寫(xiě)的四個(gè)漢字,其中為軸對(duì)稱(chēng)圖形的是

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,△ABC經(jīng)過(guò)平移后,頂點(diǎn)A平移到了A/(-1,3);

(1)畫(huà)出平移后的△A′B′C′。
(2)求出△A′B′C′的面積。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

下列命題:①圓周角等于圓心角的一半;②是方程的解;③平行四邊形既是中心對(duì)稱(chēng)圖形又是軸對(duì)稱(chēng)圖形;④的算術(shù)平方根是4。其中真命題的個(gè)數(shù)有(   )
A.1  B.2C.3  D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,將沿折疊,使點(diǎn)邊的中點(diǎn)重合,下列結(jié)論中:
;  ②;
; ④,
正確的個(gè)數(shù)是(    )
A.1B.2C.3D.4

查看答案和解析>>

同步練習(xí)冊(cè)答案