【題目】如圖,O是等邊內(nèi)一點,,以點B為旋轉(zhuǎn)中心,將線段BO逆時針旋轉(zhuǎn)得到線段,連接,則下列結(jié)論:

可以由繞點B逆時針旋轉(zhuǎn)得到

②連接,則

其中正確的結(jié)論是____________

【答案】①②③

【解析】

如圖,連接OO′,首先證明OBO′為為等邊三角形,得到OO′OB4,故選項②正確;證明ABO′≌△CBO,得到選項①正確;運用勾股定理逆定理證明AOO′為直角三角形,求出∠AOB的度數(shù),得到選項③正確;運用三角函數(shù)及三角形面積公式求出四邊形AOBO′的面積,可判斷選項④錯誤.

解:如圖,連接OO′;

∵△ABC為等邊三角形,

∴∠ABC60°,ABCB,

由題意得:∠OBO′60°,OBO′B,

∴△OBO′為等邊三角形,∠ABO′=∠CBO

OO′OB4,∠BOO′60°,②正確;

ABO′CBO中,,

∴△ABO′≌△CBOSAS),

AO′OC5,

BO′A可以由BOC繞點B逆時針方向旋轉(zhuǎn)60°得到,①正確;

AOO′中,AO′5,OA3,OO′4,

324252

∴△AOO′為直角三角形,且∠AOO′90°,

∴∠AOB90°60°150°,③正確;

S四邊形AOBO′×4×4×sin60°×3×4,④錯誤,

綜上所述,正確的結(jié)論為①②③.

故答案為:①②③.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在菱形ABCD中,AB2,∠D120°,將菱形翻折,使點A落在邊CD的中點E處,折痕交邊AD,AB于點G,F,則AF的長為___

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某超市銷售一種高檔蔬菜莼菜,其進價為16/kg.經(jīng)市場調(diào)查發(fā)現(xiàn):該商品的日銷售量y(kg)是售價x(/kg)的一次函數(shù),其售價、日銷售量對應(yīng)值如表:

售價(/)

20

30

40

日銷售量()

80

60

40

(1)關(guān)于的函數(shù)解析式(不要求寫出自變量的取值范圍)

(2)為多少時,當天的銷售利潤 ()最大?最大利潤為多少?

(3)由于產(chǎn)量日漸減少,該商品進價提高了/,物價部門規(guī)定該商品售價不得超過36/,該商店在今后的銷售中,日銷售量與售價仍然滿足(1)中的函數(shù)關(guān)系.若日銷售最大利潤是864元,求的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】拋物線yx2+bx+c的圖象經(jīng)過點A(10)B(0,﹣3)

1)求這個拋物線的解析式;

2)拋物線與x軸的另一交點為C,拋物線的頂點為D,判斷CBD的形狀;

3)直線BNx軸,交拋物線于另一點N,點P是直線BN下方的拋物線上的一個動點(點P不與點B和點N重合),過點Px軸的垂線,交直線BC于點Q,當四邊形BPNQ的面積最大時,求出點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD的邊長為4EBC邊的中點,點P在射線AD上,過PPFAEF,設(shè)PAx

(1)求證:△PFA∽△ABE;

(2)若以PFE為頂點的三角形也與△ABE相似,試求x的值;

(3)試求當x取何值時,以D為圓心,DP為半徑的⊙D與線段AE只有一個公共點.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中(如圖),已知函數(shù)的圖像和反比例函數(shù)的在第一象限交于A點,其中點A的橫坐標是1

1)求反比例函數(shù)的解析式;

2)把直線平移后與軸相交于點B,且,求平移后直線的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形中,連接,以點為圓心,為半徑畫弧,交于點,已知,,則圖中陰影部分的面積為_______.(結(jié)果保留

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線軸交于點和點,與軸交于點,點坐標為,點坐標為,點是拋物線的頂點,過點軸的垂線,垂足為,連接

1)求拋物線的解析式及點的坐標;

2)點是拋物線上的動點,當時,求點的坐標;

3)若點軸上方拋物線上的動點,以為邊作正方形,隨著點的運動,正方形的大小、位置也隨著改變,當頂點恰好落在軸上時,請直接寫出點的橫坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD內(nèi)接于⊙O,且對角線ACBD,垂足為點E,過點CCFAB于點F,交BD于點G

1)如圖①,連接EF,若EF平分∠AFG,求證:AEGE

2)如圖②,連接CO并延長交AB于點H,若CH為∠ACF的平分線,AD3,且tanFBG,求線段AH

查看答案和解析>>

同步練習冊答案