已知:關(guān)于x的一元二次方程kx2+2x+2-k=0.
(1)若原方程有兩個實數(shù)根,求實數(shù)k的取值范圍;
(2)設(shè)上述方程的兩個實數(shù)根分別為x1、x2,求:當k取哪些整數(shù)時,x1、x2均為整數(shù);
(3)設(shè)上述方程的兩個實數(shù)根分別為x1、x2,若|x1-x2|=2,求k的值.
分析:(1)根據(jù)判別式的意義得到k≠0且△=22-4k(2-k)≥0,然后求出兩不等式的公共部分即可;
(2)先由根與系數(shù)的關(guān)系得到x1+x2=-
2
k
,根據(jù)整數(shù)的整除性得到k=±1,±2,再利用求根根式得到x1=
k-3
2k
,x2=
-k-1
2k
,然后判斷出當k取整數(shù)±1時,x1、x2均為整數(shù);
(3)根據(jù)根與系數(shù)的關(guān)系得x1+x2=-
2
k
,x1•x2=
2-k
k
,再把|x1-x2|=2變形得到(x1-x22=4,(x1+x22-4x1•x2=4,然后利用整體代入的方法得到關(guān)于k的方程,再解方程即可.
解答:解:(1)根據(jù)題意得k≠0且△=22-4k(2-k)≥0,
解得k≠0;
(2)∵x1+x2=-
2
k
,
而k為整數(shù),x1、x2均為整數(shù),
∴k=±1,±2,
∵△=(k-1)2,
x=
-2±(k-1)
2k

∴x1=
k-3
2k
,x2=
-k-1
2k
,
∴當k取整數(shù)±1時,x1、x2均為整數(shù);
(3))根據(jù)題意得x1+x2=-
2
k
,x1•x2=
2-k
k
,
∵|x1-x2|=2,
∴(x1-x22=4,
∴(x1+x22-4x1•x2=4,
∴(-
2
k
2-4×
2-k
k
=4,
∴k=
1
2
點評:本題考查了一元二次方程ax2+bx+c=0(a≠0)的根的判別式△=b2-4ac:當△>0,方程有兩個不相等的實數(shù)根;當△=0,方程有兩個相等的實數(shù)根;當△<0,方程沒有實數(shù)根.也考查了一元二次方程的根與系數(shù)的關(guān)系.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知:關(guān)于x的一元二次方程mx2-(2m+n)x+m+n=0①.
(1)求證:方程①有兩個實數(shù)根;
(2)求證:方程①有一個實數(shù)根為1;
(3)設(shè)方程①的另一個根為x1,若m+n=2,m為正整數(shù)且方程①有兩個不相等的整數(shù)根時,確定關(guān)于x的二次函數(shù)y=mx2-(2m+n)x+m+n的解析式;
(4)在(3)的條件下,把Rt△ABC放在坐標系內(nèi),其中∠CAB=90°,點A、B的坐標分別為(1,0)、(4,0),BC=5,將△ABC沿x軸向右平移,當點C落在拋物線上時,求△ABC平移的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

5、已知:關(guān)于x的一元二次方程ax2+bx+c=3的一個根為x=2,且二次函數(shù)y=ax2+bx+c的對稱軸是直線x=2,則拋物線的頂點坐標為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:關(guān)于x的一元二次方程x2-2(m+1)x+m2=0有兩個整數(shù)根,m<5且m為整數(shù).
(1)求m的值;
(2)當此方程有兩個非零的整數(shù)根時,將關(guān)于x的二次函數(shù)y=x2-2(m+1)x+m2的圖象沿x軸向左平移4個單位長度,求平移后的二次函數(shù)圖象的解析式;
(3)當直線y=x+b與(2)中的兩條拋物線有且只有三個交點時,求b的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:關(guān)于x的一元二次方程x2-2x+c=0的一個實數(shù)根為3.
(1)求c的值;
(2)二次函數(shù)y=x2-2x+c,當-2<x≤2時,y的取值范圍;
(3)二次函數(shù)y=x2-2x+c與x軸交于點A、B(A左B右),頂點為點C,問:是否存在這樣的點P,以P為位似中心,將△ABC放大為原來的2倍后得到△DEF(即△EDF∽△ABC,相似比為2),使得點D、E恰好在二次函數(shù)上且DE∥AB?若存在,求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•延慶縣二模)已知:關(guān)于x的一元二次方程mx2-(2m+2)x+m-1=0
(1)若此方程有實根,求m的取值范圍;
(2)在(1)的條件下,且m取最小的整數(shù),求此時方程的兩個根;
(3)在(2)的前提下,二次函數(shù)y=mx2-(2m+2)x+m-1與x軸有兩個交點,連接這兩點間的線段,并以這條線段為直徑在x軸的上方作半圓P,設(shè)直線l的解析式為y=x+b,若直線l與半圓P只有兩個交點時,求出b的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案