如圖,已知拋物線y=ax2+bx(a≠0)經(jīng)過A(3,0)、B(4,)兩點(diǎn)。
(1)求拋物線的解析式;
(2)將拋物線向下平移m個(gè)單位長度后,得到的拋物線與直線OB只有兩個(gè)公共點(diǎn)D,求m的取值范圍。
1)∵拋物線y=ax2+bx(a≠0)經(jīng)過A(3,0)、B(4,)
∴將A與B兩點(diǎn)坐標(biāo)代入得:,解得:。
∴拋物線的解析式是。
(2)設(shè)直線OB的解析式為y=k1x,由點(diǎn)B(4,),得:=4k1,解得:k1=。
∴直線OB的解析式為y=x。
∵拋物線向下平移m個(gè)單位長度后的解析式為:。
∵點(diǎn)D在直線OB上,∴可設(shè)D(x,x)。
又∵點(diǎn)D在直線上,∴,即。
∵拋物線與直線有兩個(gè)公共點(diǎn),∴,解得:m<4。
【考點(diǎn)】曲線平移問題,曲線上點(diǎn)的坐標(biāo)與方程的關(guān)系,一元二次方程根的判別式,
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
如圖,已知△ABC,AB=AC=1,∠BAC=108°,點(diǎn)D在BC上,AD=BD,則AD的長是
,cosB的值是 (結(jié)果保留根號)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
定義:如果一個(gè)y與x的函數(shù)圖象經(jīng)過平移后能與某反比例函數(shù)的圖象重合,那么稱這個(gè)函數(shù)是y與x的“反比例平移函數(shù)”.例如:的圖象向左平移2個(gè)單位,再向下平移1個(gè)單位得到的圖象,則是y與x的“反比例平移函數(shù)”.
(1)若矩形的兩邊分別是2cm、3cm,當(dāng)這兩邊分別增加x(cm)、y(cm)后,得到的新矩形的面積為8cm2,求y與x的函數(shù)表達(dá)式,并判斷這個(gè)函數(shù)是否為“反比例平移函數(shù)”.
(2)如圖,在平面直角坐標(biāo)系中,點(diǎn)O為原點(diǎn),矩形OABC的頂點(diǎn)A、C的坐標(biāo)分別為(9,0)、(0,3).點(diǎn)D是OA的中點(diǎn),連接OB、CD交于點(diǎn)E,“反比例平移函數(shù)”的圖象經(jīng)過B、E兩點(diǎn).則這個(gè)“反比例平移函數(shù)”的表達(dá)式為 ;這個(gè)“反比例平移函數(shù)”的圖象經(jīng)過適當(dāng)?shù)淖儞Q與某一個(gè)反比例函數(shù)的圖象重合,請寫出這個(gè)反比例函數(shù)的表達(dá)式.
(3)在(2)的條件下,已知過線段BE中點(diǎn)的一條直線l交這個(gè)“反比例平移函數(shù)”圖象于P、Q兩點(diǎn)(P在Q的右側(cè)),若B、E、P、Q為頂點(diǎn)組成的四邊形面積為16,請求出點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,在正方形ABCD中,AB=4cm,動(dòng)點(diǎn)M從A出發(fā),以1cm/s的速度沿折線AB﹣BC運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)N從A出發(fā),以2cm/s的速度沿折線AD﹣DC﹣CB運(yùn)動(dòng),M,N第一次相遇時(shí)同時(shí)停止運(yùn)動(dòng).設(shè)△AMN的面積為y,運(yùn)動(dòng)時(shí)間為x,則下列圖象中能大致反映y與x的函數(shù)關(guān)系的是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,在△ABC中,∠A=90°,AB=2cm,AC=4cm.動(dòng)點(diǎn)P從點(diǎn)A出發(fā),沿AB方向以1cm/s的速度向點(diǎn)B運(yùn)動(dòng),動(dòng)點(diǎn)Q從點(diǎn)B同時(shí)出發(fā),沿BA方向以1cm/s的速度向點(diǎn)A運(yùn)動(dòng).當(dāng)點(diǎn)P到達(dá)點(diǎn)B時(shí),P,Q兩點(diǎn)同時(shí)停止運(yùn)動(dòng),以AP為一邊向上作正方形APDE,過點(diǎn)Q作QF∥BC,交AC于點(diǎn)F.設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為ts,正方形和梯形重合部分的面積為Scm2.
(1)當(dāng)t= _________ s時(shí),點(diǎn)P與點(diǎn)Q重合;
(2)當(dāng)t= _________ s時(shí),點(diǎn)D在QF上;
(3)當(dāng)點(diǎn)P在Q,B兩點(diǎn)之間(不包括Q,B兩點(diǎn))時(shí),求S與t之間的函數(shù)關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,平面之間坐標(biāo)系中,Rt△ABC的∠ACB=90º,∠CAB=30º,直角邊BC在x軸正半軸上滑動(dòng),點(diǎn)C的坐標(biāo)為(t,0),直角邊AC=,經(jīng)過O,C兩點(diǎn)做拋物線(a為常數(shù),a>0),該拋物線與斜邊AB交于點(diǎn)E,直線OA:y2=kx(k為常數(shù),k>0)
(1)填空:用含t的代數(shù)式表示點(diǎn)A的坐標(biāo)及k的值:A ,k= ;
(2)隨著三角板的滑動(dòng),當(dāng)a=1時(shí):
①請你驗(yàn)證:拋物線的頂點(diǎn)在函數(shù)的圖象上;
②當(dāng)三角板滑至點(diǎn)E為AB的中點(diǎn)時(shí),求t的值。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,已知?jiǎng)狱c(diǎn)A在函數(shù)(x>o)的圖象上,AB⊥x軸于點(diǎn)B,AC⊥y軸于點(diǎn)C,延長CA至點(diǎn)D,使AD=AB,延長BA至點(diǎn)E,使AE=AC。直線DE分別交x軸,y軸于點(diǎn)P,Q。當(dāng)QE:DP=4:9時(shí),圖中的陰影部分的面積等于 _。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,已知點(diǎn)P是拋物線上的一動(dòng)點(diǎn),過點(diǎn)P分別作PM⊥x軸于點(diǎn)M,PN⊥y軸于點(diǎn)N,在四邊形PMON上分別截取PC=MP,MD=OM,OE=ON,NF=NP.問:在拋物線上是否存在這樣的點(diǎn)P,使四邊形CDEF為矩形?若存在,請求出所有符合條件的P點(diǎn)坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com