如圖,在正方形ABCD中,AB=4cm,動點M從A出發(fā),以1cm/s的速度沿折線AB﹣BC運動,同時動點N從A出發(fā),以2cm/s的速度沿折線AD﹣DC﹣CB運動,M,N第一次相遇時同時停止運動.設(shè)△AMN的面積為y,運動時間為x,則下列圖象中能大致反映y與x的函數(shù)關(guān)系的是( )
A. B. C. D.
科目:初中數(shù)學 來源: 題型:
如圖,在Rt△ABC中,∠C=900,∠B=300,BC=,點D是BC邊上一動點(不與點B、C重合),過點D作DE⊥BC交AB邊于點E,將∠B沿直線DE翻折,點B落在射線BC上的點F處,當△AEF為等腰三角形時,BD的長為 。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
已知,大正方形的邊長為4,小正方形的邊長為2,狀態(tài)如圖所示.大正方形固定不動,把小正方形以的速度向大正方形的內(nèi)部沿直線平移,設(shè)平移的時間為秒,兩個正方形重疊部分的面積為,完成下列問題:
(1).用含的式子表示,要求畫出相應的圖形,表明的范圍;
(2).當,求重疊部分的面積;
(3).當,求的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
如圖,在Rt△ABC中,∠C=90°,∠A=45°,AB=2.將△ABC繞頂點A順時針方向旋轉(zhuǎn)至△AB′C′的位置,B,A,C′三點共線,則線段BC掃過的區(qū)域面積為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
如圖,在矩形ABCD中,點P在邊CD上,且與C、D不重合,過點A作AP的垂線與CB的延長線相交于點Q,連接PQ,M為PQ中點.
(1)求證:△ADP∽△ABQ;
(2)若AD=10,AB=20,點P在邊CD上運動,設(shè)CP=x,BM2=y,求y與x的函數(shù)關(guān)系式,并求線段BM的最小值;
(3)若AD= a,AB=,DP=8,隨著a的大小的變化,點M的位置也在變化.當點M落在矩形ABCD內(nèi)部時,求a的取值范圍。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
如圖,已知拋物線y=ax2+bx(a≠0)經(jīng)過A(3,0)、B(4,)兩點。
(1)求拋物線的解析式;
(2)將拋物線向下平移m個單位長度后,得到的拋物線與直線OB只有兩個公共點D,求m的取值范圍。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
如圖,在平面直角坐標系中,四邊形ABCO是梯形,其中A(4,0),B(3,),C(1,),動點P從點A以每秒1個單位的速度向點O運動,動點Q也同時從點A沿A→B→ C→O的線路以每秒2個單位的速度向點O運動,當點P到達A點時,點Q也隨之停止,設(shè)點P、Q運動的時間為t(秒)。求△OPQ的面積S與時間t的函數(shù)關(guān)系式。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
在平面直角坐標系中,已知拋物線(a,c為常數(shù))的頂點為P,等腰直角三角形ABC的頂點A的坐標為(0,﹣1),C的坐標為(﹣4,3),直角頂點B在第二象限。
(1)如圖,若該拋物線過A,B兩點,求該拋物線的函數(shù)表達式;
(2)平移(1)中的拋物線,使頂點P在直線AC上滑動,且與AC交于另一點Q,若點M在直線AC下方,且為平移前(1)中的拋物線上的點,當以M、P、Q三點為頂點的三角形是等腰直角三角形時,求出所有符合條件的點M的坐標。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com