如圖,在平面直角坐標系中,拋物線y=ax2+bx+4與x軸的一個交點為A(-2,0),與y軸的交點為C,對稱軸是x=3,對稱軸與x軸交于點B.
(1)求拋物線的函數(shù)表達式;
(2)經(jīng)過B,C的直線l平移后與拋物線交于點M,與x軸交于點N,當(dāng)以B,C,M,N為頂點的四邊形是平行四邊形時,求出點M的坐標;
(3)若點D在x軸上,在拋物線上是否存在點P,使得△PBD≌△PBC?若存在,直接寫出點P的坐標;若不存在,請說明理由.
(1)拋物線為y=-x2+x+4.(2)M的坐標為(6,4)或(3-,-4)或(3+,-4).(3)點P的坐標為(4+,)或(4-,)或(-1+,-8+2)或(-1-,-8-2).

試題分析:(1)解析式已存在,y=ax2+bx+4,我們只需要根據(jù)特點描述求出a,b即可.由對稱軸為-,又過點A(-2,0),所以函數(shù)表達式易得.
(2)四邊形為平行四邊形,則必定對邊平行且相等.因為已知MN∥BC,所以MN=BC,即M、N的位置如B、C位置關(guān)系,則可分2種情形,①N點在M點右下方,即M向下平行4個單位,向右2個單位與N重合;②M點在N右下方,即N向下平行4個單位,向右2個單位與M重合.因為M在拋物線,可設(shè)坐標為(x,-x2+x+4),易得N坐標.由N在x軸上,所以其縱坐標為0,則可得關(guān)于x的方程,進而求出x,求出M的坐標.
(3)使△PBD≌△PBC,易考慮∠CBD的平分線與拋物線的交點.確定平分線可因為BC=BD,可作等腰△BCD,利用三線合一,求其中線所在方程,進而與拋物線聯(lián)立得方程組,解出P即可.
試題解析:(1)∵拋物線y=ax2+bx+4交x軸于A(-2,0),
∴0=4a-2b+4,
∵對稱軸是x=3,
∴-=3,即6a+b=0,
兩關(guān)于a、b的方程聯(lián)立解得 a=-,b=
∴拋物線為y=-x2+x+4.
(2)∵四邊形為平行四邊形,且BC∥MN,
∴BC=MN.
①N點在M點右下方,即M向下平移4個單位,向右平移2個單位與N重合.
設(shè)M(x,-x2+x+4),則N(x+2,-x2+x),
∵N在x軸上,
∴-x2+x=0,
解得 x=0(M與C重合,舍去),或x=6,
∴xM=6,
∴M(6,4).
②M點在N右下方,即N向下平行4個單位,向右2個單位與M重合.
設(shè)M(x,- x2+x+4),則N(x-2,-x2+x+8),
∵N在x軸上,
∴-x2+x+8=0,
解得 x=3-,或x=3+
∴xM=3-,或3+
∴M(3-,-4)或(3+,-4)
綜上所述,M的坐標為(6,4)或(3-,-4)或(3+,-4).
(3)∵OC=4,OB=3,
∴BC=5.
如果△PBD≌△PBC,那么BD=BC=5,
∵D在x軸上,
∴D為(-2,0)或(8,0).
①當(dāng)D為(-2,0)時,連接CD,過B作直線BE平分∠DBC交CD于E,交拋物線于P1,P2,
此時△P1BC≌△P1BD,△P2BC≌△P2BD,
∵BC=BD,
∴E為CD的中點,即E(-1,2),
設(shè)過E(-1,2),B(3,0)的直線為y=kx+b,則,
解得,
∴BE:y=-x+
設(shè)P(x,y),則有,
解得 ,或,
則P1(4+),P2(4-,).
②當(dāng)D為(8,0)時,連接CD,過B作直線BF平分∠DBC交CD于F,交拋物線于P3,P4,
此時△P3BC≌△P3BD,△P4BC≌△P4BD,
∵BC=BD,
∴F為CD的中點,即E(4,2),
設(shè)過E(4,2),B(3,0)的直線為y=kx+b,則,
解得 ,
∴BF:y=2x-6.
設(shè)P(x,y),則有,
解得
則P3(-1+,-8+2),P4(-1-,-8-2).
綜上所述,點P的坐標為(4+,)或(4-,)或(-1+,-8+2)或(-1-,-8-2).
【考點】二次函數(shù)綜合題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,二次函數(shù)y=x2+bx+c的圖象交x軸于A、D兩點,并經(jīng)過B點,已知A點坐標是(2,0),B點的坐標是(8,6).
(1)求二次函數(shù)的解析式.
(2)求函數(shù)圖象的頂點坐標及D點的坐標.
(3)該二次函數(shù)的對稱軸交x軸于C點.連接BC,并延長BC交拋物線于E點,連接BD,DE,求△BDE的面積.
(4)拋物線上有一個動點P,與A,D兩點構(gòu)成△ADP,是否存在SADP=SBCD?若存在,請求出P點的坐標;若不存在.請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在平面直角坐標系中,已知點P(0,4),點A在線段OP上,點B在x軸正半軸上,且AP=OB=t, 0<t<4,以AB為邊在第一象限內(nèi)作正方形ABCD;過點C、D依次向x軸、y軸作垂線,垂足為M,N,設(shè)過O,C兩點的拋物線為y=ax2+bx+c.
(1)填空:△AOB≌△       ≌△BMC(不需證明);用含t的代數(shù)式表示A點縱坐標:A(0,       ;
(2)求點C的坐標,并用含a,t的代數(shù)式表示b;
(3)當(dāng)t=1時,連接OD,若此時拋物線與線段OD只有唯一的公共點O,求a的取值范圍;
(4)當(dāng)拋物線開口向上,對稱軸是直線,頂點隨著t的增大向上移動時,求t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,拋物線y=﹣x2+mx+n與x軸交于A、B兩點,與y軸交于點C,拋物線的對稱軸交x軸于點D,已知A(﹣1,0),C(0,2).
(1)求拋物線的表達式;
(2)在拋物線的對稱軸上是否存在點P,使△PCD是以CD為腰的等腰三角形?如果存在,直接寫出P點的坐標;如果不存在,請說明理由;
(3)點E時線段BC上的一個動點,過點E作x軸的垂線與拋物線相交于點F,當(dāng)點E運動到什么位置時,四邊形CDBF的面積最大?求出四邊形CDBF的最大面積及此時E點的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

在平面直角坐標系中,拋物線經(jīng)過點(0,),(3,4).
(1)求拋物線的表達式及對稱軸;
(2)設(shè)點關(guān)于原點的對稱點為,點是拋物線對稱軸上一動點,記拋物線在,之間的部分為圖象(包含,兩點).若直線與圖象有公共點,結(jié)合函數(shù)圖像,求點縱坐標的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知拋物線與x軸交點為A、B(點B在點A的右側(cè)),與y軸交于點C.
(1)試用含m的代數(shù)式表示A、B兩點的坐標;
(2)當(dāng)點B在原點的右側(cè),點C在原點的下方時,若是等腰三角形,求拋物線的解析式;
(3)已知一次函數(shù),點P(n,0)是x軸上一個動點,在(2)的條件下,過點P作垂直于x軸的直線交這個一次函數(shù)的圖象于點M,交拋物線于點N,若只有當(dāng)時,點M位于點N的下方,求這個一次函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

閱讀下列材料,并解答問題:
函數(shù)y=ax2+bx+c(a≠0)叫做二次函數(shù),它的圖象是拋物線,二次函數(shù)可以化成y=a(x-h)2+k的形式,則點(h,k)為拋物線的頂點坐標.
例:y=2x2+4x-1=2(x+1)2-3,則頂點坐標為(-1,-3).
運用上述方法,求拋物線y=-2x2-3x+4的頂點坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

二次函數(shù)的圖象如圖所示.當(dāng)y<0時,自變量x的取值范圍是(    ).
A.-1<x<3
B.x<-1
C.x>3
D.x<-1或x>3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,正方形ABCD中,AB=8cm,對角線AC,BD相交于點O,點E,F分別從B,C兩點同時出發(fā),以1cm/s的速度沿BC,CD運動,到點C,D時停止運動,設(shè)運動時間為t(s),△OEF的面積為s(),則s()與t(s)的函數(shù)關(guān)系可用圖像表示為(   )

查看答案和解析>>

同步練習(xí)冊答案